Mengumpamakan diode sebagai sakelar

Salah satu prinsip belajar dalam Elektronika Daya adalah memulai dari yang sederhana. Ini tidak berarti sekadar mencari hal-hal yang mudah saja. Melainkan agar hal-hal yang memang sebenarnya dapat dipahami menurut takaran umum, tidak gagal dipahami hanya karena terkesan kompleks sekalipun sesungguhnya kompleksitas itu tidak diperlukan.

Kondisi belajar yang ingin dicapai adalah kondisi yang menurut ilmuwan Mihaly Csikszentmihalyi disebut sebagai flow .{{1}}  Karena itu penting untuk mengusahakan agar sebisanya hal-hal yang perlu dipelajari dibagi-bagi ke dalam satuan pelajaran yang memungkinkan pelajar untuk mampu memahaminya dan mencapai kondisi flow dalam prosesnya.{{2}} Itu sebabnya sekalipun dalam elektronika daya satu bagian seringkali berkaitan erat dengan bagian lainnya, diusahakan agar pelajar dapat memahaminya seperti sedang menyusun bagian-bagian dari sebuah puzzle. Keasyikan dalam menyusun puzzle diharapkan akan mempermudah pencapaian kondisi flow.

Mengenai penyederhanaan, Albert Einstein dianggap pernah memberi peringatan:

Everything Should Be Made as Simple as Possible, But Not Simpler.

Oleh karena itu, mengikuti pola yang sama selalu akan dicoba dalam perkuliahan elda (elektronika daya/power electronics) untuk menyederhanakan upaya pemahaman sampai batas yang diperkirakan tidak lagi tepat untuk lebih disederhanakan lebih lanjut.{{3}}  Ini tentu saja tidak berarti mengurangi atau menghilangkan perlunya mahasiswa untuk rajin belajar (termasuk rajin membaca).

Untuk mahasiswa yang baru memulai belajar mengenai penggunaan diode dalam elektronika atau yang sudah mulai lupa dapat melihat pada post sebelumnya tentang sakelar sebagai elemen dasar dalam perkuliahan elektronika daya. Hanya saja cukup dilihat sepintas karena di dalamnya juga memuat tentang model sakelar bagi SCR dan TRIAC yang akan dibahas di bagian mendekati akhir elektronika daya 1. Berikut adalah tautan ke post tersebut [link].

Pada Gambar 1 bisa dilihat contoh sederhana yang memposisikan sakelar sebagai pengganti diode. Anggap saja untuk sementara komponen sakelar ini adalah diode. Mirip dengan post sebelumnya, hanya saja di sini aktivasinya diatur sedemikian rupa sehingga hanya akan mengalirkan arus listrik konvensional pada saat tertentu (lebih tepatnya saat bagian positif dari siklus tegangan sumber.

Gambar 1. Analogi diode sebagai sakelar.

Gambar 2. Tegangan masukan (biru) dan tegangan keluaran (merah).

Pada Gambar 2 dapat dilihat hasil dari simulasi pada Gambar 1. Tegangan kendali sakelar Switch01 (tegControl) hanya diaktifkan selama 10 mS pertama dari siklus 20 mS tegangan masukan (tegIn). Sehingga akan meniru unjuk kerja diode PN (seperti 1n4001).

Simulasi ini bermanfaat untuk memahami unjuk kerja dasar dari diode secara sederhana dan komponen penyakelar elektronik lainnya seperti SCR, TRIAC, BJT, MOSFET dan IGBT. Selanjutnya juga dapat membantu mengidentifikasi kondisi tidak ideal dari diode (dan karenanya model diode yang memang dibuat untuk menyerupai masing-masing diode itu).

Gambar 3. Aktif selama 7 mS.

Berbeda dengan Gambar 1, pada Gambar 3 simulasi dilakukan dengan mengaktifkan Switch01 selama 7mS dari 20 mS untuk tiap siklus tegangan masukan. Tegangan masukan (tegIn) diatur memiliki frekuensi sebesar 50 Hz yang artinya sebanding dengan periode sebesar 20 mS. Simulasi ini tentu saja tidak sama dengan hasil simulasi kerja diode yang menyerupai Gambar 2.

Gambar 4. Aktif selama 14 mS.

Berbeda dengan unjuk kerja diode sebagai sakelar pada Gambar 2, Gambar 4 menunjukkan apa yang terjadi jika sakelar tidak hanya diaktifkan selama bagian tegangan positif dari siklus tegangan masukan (10 mS dari 20 mS), melainkan dihidupkan selama 14 mS.

Gambar 5. Aktif selama 10 mS dengan penundaan aktivasi selama 2 mS.

Pada simulasi di Gambar 5, sakelar memang diaktifkan selama 10 mS sama dengan simulasi pada Gambar 1. Tetapi terdapat perbedaan, ada waktu tunda selama 2 mS sebelum sakelar aktif. Diode tidak secara normal bekerja seperti ini, karenanya hasil simulasi berbeda dengan Gambar 2.

Gambar 6. Simulasi ketidakidealan komponen diode.

Simulasi dengan sakelar ini dapat pula dipakai untuk lebih lanjut mempelajari tentang karakteristik komponen diode yang tidak ideal (yang sebenarnya tersedia di pasaran). Pada Gambar 6, frekuensi sumber tegangan adalah sebesar 50 kHz. Pada frekuensi masukan yang tinggi diode PN akan menunjukkan gejala serupa pada Gambar 6, dan tidak akan persis lagi menyerupai keluaran seperti pada Gambar 2. Fenomena ini dinamakan turn-off characteristics dari diode.

Turn-Off Characteristics of Power Diode: a) Variation of Forward Current if ; b) Variation of Forward Voltage Drop vf ; c) Variation of Power LossGambar 7. Turn-Off Characteristics of Power Diode. [sumber: https://goo.gl/ROR8BT]

Gambar 8. Simulasi menggunakan TINA-TI

Simulasi penyakelaran seperti ini dapat dilakukan tidak hanya dengan simulator LTspice tetapi juga dengan simulator lain seperti TINA. Versi yang secara legal gratis dan mencukupi untuk keperluan ini adalah TINA versi khusus untuk produk dari Texas Instruments (TINA-TI). Dapat dilihat bahwa dalam belajar kita tidak perlu selalu harus membajak atau menggunakan software bajakan. Beberapa (sebenarnya cukup banyak) hal yang bisa juga dikerjakan bahkan dengan produk yang dari sisi pengguna secara legal gratis.

[[1]]

“… Dan tanpa memandang budaya, tanpa memandang tingkat pendidikan atau apa pun, ada tujuh kondisi yang tampatknya ada ketika seseorang dalam keadaan flow. Bahwa ada fokus yang sekali waktu menjadi intens, menggiring ke perasaan ekstasi, perasaan akan kejelasan, Anda tahu persis apa yang Anda mau lakukan dari satu momen ke momen yang lain, Anda mendapat umpan balik langsung. Anda tahu bahwa apa yang Anda lakukan mungkin untuk dilakukan, walaupun sulit, dan perasaan akan waktu menghilang, Anda melupakan diri Anda sendiri, Anda merasa menjadi suatu bagian dari sesuatu yang lebih besar. Dan ketika kondisi-kondisi tersebut muncul, apa yang Anda lakukan menjadi bermakna untuk dilakukan karena hal itu sendiri.” ~https://www.ted.com/talks/mihaly_csikszentmihalyi_on_flow/transcript?language=id

[[1]] [[2]]

“Kondisi Flow juga didefinisikan sebagai keadaan di mana tantangan dan keterampilan mempunyai keseimbangan.” ~goo.gl/FGULiC

[[2]] [[3]]

“In other words, the best theory (in science or philosophy) is the simplest one that still explains observations.” ~https://goo.gl/cbSlXN

[[3]]

 

Sumber bacaan:

 

 

Gelombang kotak, gelombang sinus dan harmonisa

Tahukah anda cerita mengenai silang pendapat tentang benda yang disebut sebagai seekor gajah?

http://www.nature.com/ki/journal/v62/n5/fig_tab/4493262f1.html

Kali ini kita akan melihat “seekor gajah” dari salah satu sisi. Kita kenali salah satu bagian yang (bersama bagian yang lain) membuat sebuah benda dinamai “gajah”.

 

Gelombang sinusoida dapat dipakai sebagai dasar untuk membentuk gelombang lain, misalnya gelombang kotak. Dengan kata lain suatu gelombang kotak dapat didekonstruksi menjadi beberapa gelombang sinusoida.

Berikut adalah beberapa contoh gambar dari beberapa sumber di Internet yang memperjelas konsepnya secara sederhana. Pertama mari melihat dua buah gelombang sinus yang memiliki amplitudo yang sama (puncak yang tingginya sama) tetapi berbeda nilai frekuensinya.

Gambar 1. sumber gambar: [1]

Gambar 1 adalah visualisasi pada ranah waktu (time domain) sedangkan gelombang yang sama bisa digambarkan dengan cara yang berbeda di ranah frekuensi (frequency domain) seperti yang diperlihatkan pada Gambar 2.

Gambar 2. sumber gambar: [1]

Bisa dilihat pada Gambar 2 bahwa nilai frekuensi untuk dua gelombang adalah jelas berbeda (x dan 3 kali x), tetapi besar nilai amplitudonya sama. Diwakili oleh ruas garis yang tingginya sama.

Gambar 3. sumber gambar: [1]

Ada tiga buah gelombang yang berbeda pada Gambar 3. Bisa kita lihat akibat dari penggabungan sejumlah gelombang yang berbeda frekuensi dan amplitudonya pada satu gelombang. Dengan pengaturan tertentu, kita bisa melihat bahwa gelombang ketiga yang merupakan gelombang hasil gabungan dari beberapa gelombang sudah menyerupai bentuk dari gelombang kotak.

Gambar 4. sumber gambar: [2]

Atau kalau kita mencoba melihat dari sudut yang berbeda (arah datang yang lain) maka kita bisa mengatakan bahwa sebuah gelombang “yang menyerupai gelombang segi empat” dapat diuraikan menjadi beberapa gelombang sinusoida yang memiliki besar (amplitudo) dan frekuensi tertentu seperti terlihat pada Gambar 4.

Gambar 5. sumber gambar: [2]

Bentuk gelombang serupa dengan gelombang terakhir pada Gambar 3 bisa ditampilkan terpisah agar lebih jelas seperti pada Gambar 5. Tiga buah gelombang sinus membentuk gelombang yang mendekati bentuk segi empat yang diberi warna hijau.

 

Gambar 6. Persamaamaan dasar pembentukan gelombang segi empat (w/harmonics)
sumber gambar: [3]

Gambar 7. Contoh pengerjaan untuk frekuensi dasar 100 Hz
sumber gambar: [3]

 

Gambar 8. Gelombang segi empat yang dibentuk/terdiri dari tiga harmonics
sumber gambar: [3]

Gambar 9. Gelombang segi empat yang dibentuk/terdiri dari lima harmonics
sumber gambar: [3]

Gambar 10. Gelombang segi empat yang dibentuk/terdiri dari dua puluh lima harmonics
sumber gambar: [3]

Sebuah gelombang kotak (segi empat) yang “sempurna” dapat dibentuk jika kita memiliki lebar pita harmonisa (harmonics) yang tidak terbatas. Dengan kata lain suatu gelombang yang semakin mendekati bentuk gelombang kotak maka akan semakin memiliki banyak harmonics.

Gambar 11. sumber gambar: [3]

Bandingkan antara Gambar 11 dengan Gambar 12 berikut ini.

Gambar 12. sumber gambar: [2]

 

Gambar 13. Visualisasi 3D untuk kawasan waktu dan kawasan frekuensi
sumber gambar: [2]

Gambar 14. sumber gambar: [4]

 

Gambar 15. sumber: http://rebloggy.com/

The smooth motion of rotating circles can be used to build up any repeating curve even one as angular as a digital square wave. Each circle spins at a multiple of a fundamental frequency, and a method called Fourier analysisshows how to pick the radiuses of the circles to make the picture work.Decomposing signals like this lies at the heart of a lot of signal processing.

 

 

REFERENSI:

[01] https://georgemdallas.wordpress.com/2014/05/14/wavelets-4-dummies-signal-processing-fourier-transforms-and-heisenberg/
[02] http://electronics.stackexchange.com/questions/32310/what-exactly-are-harmonics-and-how-do-they-appear
[03] http://recordingology.com/in-the-studio/distortion/square-wave-calculations/
[04] http://www.planetoftunes.com/sound-audio-theory/complex-soundwaves.html#.Vf69131GSPc
[05] https://www.falstad.com/fourier/
[06] https://www.mathworks.com/help/matlab/math/square-wave-from-sine-waves.html
[07] http://sage.brandoncurtis.com/fourier.html
[08] http://controlsystemsacademy.com/0018/0018.html
[09] https://www.intmath.com/fourier-series/fourier-graph-applet.php
[10] https://phet.colorado.edu/en/simulations/fourier
[11] https://www.jezzamon.com/fourier/
[12] https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/
[13] https://www.cytechglobal.com/products/analog-devices/technical-articles/try-ltspice/try-ltspice-frequency-analysis-using-fft

Transformer tegangan bolak-balik satu fase dengan beban resistor

Pada artikel sebelumnya tentang gelombang sinus pada tegangan A.C., trafo tidak dibebani. Kali ini transformer dibebani dengan dua buah resistor 100 Ohm dengan kemampuan 5 Watt.

 

Gambar 1. Konfigurasi rangkaian percobaan

 

Gambar 2. Set-up uji dengan komponen.

 

Gambar 3. Bentuk gelombang sinus pada kedua kanal menunjukkan bentuk gelombang sinus yang tidak ideal.

 

Gambar 4. Hasil simulasi rangkaian pada LTspice.

Pada Gambar 4, dapat dilihat hasil simulasi dengan LTspice terhadap konfigurasi rangkaian yang diuji dengan oscilloscope. Pada gambar itu kurva gelombang berwarna merah menggambarkan gelombang tegangan pada node vout. Pada pengujian hardware node ini diukur menggunakan kanal satu (CH1) pada oscilloscope dengan hasil keluaran berupa kurva gelombang berwarna kuning. Sedangkan kurva gelombang berwarna biru menggambarkan gelombang tegangan pada node tengah. Pada pengujian hardware node ini diukur menggunakan kanal dua (CH2) pada oscilloscope dengan hasil keluaran berupa kurva gelombang berwarna cyan. Pada Gambar 4, terdapat kotak informasi yang memberikan keterangan tentang gelombang pada node tengah. Di sana terlihat nilai rms terhitung sebesar 6.2225 V.

 

Gambar 5. Tampilan DSO dengan parameter utama gelombang di CH1 dan CH2.

Pada Gambar 5, terlihat bahwa prinsip pembagi tegangan terbukti. Nilai pengukuran gampang untuk dikenali karena komponen resistor yang digunakan memiliki nilai nominal yang sama. Nilai tegangan di CH2 adalah separuh dari nilai tegangan di CH1. Pada Gambar 5 juga dapat dilihat bahwa nilai pengukuran Vrms untuk CH2 6.20V tidak jauh berbeda dengan hasil simulasi dengan LTspice yaitu 6.2225 V. Ini memberikan keyakinan pada kemampuan mesin SPICE seperti pada LTspice untuk melakukan simulasi rangkaian. Tergantung pada seberapa detail model yang kita pergunakan dalam melakukan simulasi.

 

Gambar 6. Hasil pengukuran pada kanal satu (CH1) DSO pada tegangan terminal (node Vout).

 

Gambar 7. Hasil pengukuran pada kanal dua (CH2) DSO pada tegangan node tengah.

 

Gambar 8. Panduan istilah untuk memahami parameter hasil pengukuran DSO.

 

Kita bisa melakukan perhitungan “di dalam kepala” (on the fly), di belakang amplop atau kertas lainnya, dengan kalkulator atau dengan aplikasi. Berikut contoh pemanfaatan aplikasi untuk pembuktian pengukuran dan simulasi kita.

Gambar 9. Contoh pemanfaatan aplikasi Android untuk penghitungan pembagi tegangan.

 

Gambar 10. Contoh penggunaan aplikasi untuk melihat hubungan berdasar hukum Ohm.

Pada Gambar 10, kita lihat perhitungan yang menghubungkan antara nilai tahanan, tegangan, dan arus listrik. Dengan cara ini kita bisa mengetahui besar arus yang melalui suatu path dengan mengukur tegangan listrik yang antara node-nodenya. Pada CH2 kita mengukur nilai tegangan sebesar 6.2 Volt, dengan pengetahuan bahwa nilai nominal komponen tahanan (resistor) adalah sebesar 100 Ohm maka kita bisa mengetahui bahwa nilai arus yang melalui kaki-kaki resistor itu sebesar 62 mA.

Dengan percobaan simulasi dan pengukuran ini kita juga bisa mengetahui bahwa bentuk gelombang arus (yang diwakili gelombang tegangan pada CH2) bentuknya sama dengan gelombang tegangan terminal masukan. Berbeda hanya pada besar nilainya saja. Dengan demikian pada rangkaian yang bersifat resistif, gelombang tegangan dan arus dikatakan sefase (berada pada fase yang sama).

Gelombang Sinus Arus Bolak-Balik, Average dan RMS

Belajar elektronika daya maupun elektrikal pada umumnya, tidak bisa lepas dari berhubungan dangan gelombang sinus (sine curve / sinusoid ). Terutama pada sistem daya, bentuk gelombang ini yang paling umum ditemui. Baik untuk pembangkitan, transmisi maupun distribusi. Umumnya penyaluran energi listrik dengan arus bolak-balik (alternating current, A.C.) menggunakan bentuk ini. Karena itu pengenalan bentuk gelombang ini sangat penting.

Karena itu sebagai kelanjutan dari upaya untuk mencoba belajar dengan sistematis, yang dimulai dengan penggunaan sakelar sebagai dasar untuk analogi komponen yang lebih kompleks. Lalu dilanjutkan dengan pengenalan diode sebagai kelanjutan dari sakelar elektronik (yang tidak bisa dikendalikan). Maka kali ini akan coba diperkenalkan gelombang bolak-balik sebelum dilanjutkan dengan trafo berbeban resistor lalu penyearah setengah gelombang (half-wave rectifier), lalu penyearah gelombang penuh (full-wave rectifier).

Biasanya alur yang lebih sistematis adalah dengan melakukan simulasi terlebih dahulu dengan perangkat lunak (software) untuk simulasi rangkaian seperti SPICE( PSPICE, LTspice, Multisim, ProSPICE pada Proteus) untuk kemudian diwujudkan dengan komponen sebenarnya (hardware). Tapi untuk memudahkan alur penjelasan, pada tulisan ini arahnya dibalik. Kita akan terlebih dahulu melihat fenomena “aslinya” yang diwujudkan dengan trafo (transformer). Baru kemudian melihat bagaimana hasil simulasi dengan LTspice, apakah bersesuaian dengan kenyataan dengan menggunakan perangkat keras (hardware).

 

[su_panel border=”2px solid #80B3FF” shadow=”1px 2px 2px #80B3FF” radius=”5″]

Untuk memudahkan proses membaca, disarankan untuk membuka halaman ini dalam dua tab atau dua window(jendela). Supaya mudah untuk membaca keterangan dan membandingkan dengan / mengamati gambar. Agar tidak bolak-balik melakukan scroll.

[/su_panel]

 

Gambar 1. Bentuk gelombang sinus tegangan A.C. memperlihatkan bentuk kurva yang tidak ideal.

Pada Gambar 1, terlihat hasil pengukuran dengan DSO (digital storage oscilloscope). Gambar tersebut adalah hasil capture dengan zoom untuk dapat lebih memperlihatkan bahwa pada kenyataan praktik sehari-hari, gelombang A.C. jarang yang memiliki bentuk sempurna seperti hasil perhitungan matematis maupun hasil simulasi yang tidak memasukkan unsur ketidakidealan. Gampang ditebak hasil pengukuran numeris (berupa angka), juga akan sangat mungkin berbeda dengan hasil perhitungan atau simulasi.

Gambar 2. Bentuk gelombang sinus tegangan A.C. dengan jumlah siklus yang lebih banyak.

Pada gambar di atas, lebih banyak siklus tegangan bolak-balik yang ditampilkan. Ini untuk menunjukkan bahwa tegangan A.C. (bisa juga arus A.C. pada kesempatan lain) adalah gelombang periodik yang (sepanjang tidak ada gangguan) akan terus berulang-ulang tanpa henti. Satu periode akan sama dengan periode lainnya, dalam sistem sumber ideal. Pengecualian tentu saja untuk sumber, beban, atau sistem yang berubah bahkan tidak stabil.

Gambar 3. Semua pengukuran numeris ditampilkan pada DSO.

Pada Gambar 3, kita bisa melihat adanya fasilitas pada rata-rata DSO modern yang memungkinkan kita untuk pada satu saat bisa melihat semua parameter yang bisa diukur dari sinyal yang sedang diukur.

Gambar 4. Panduan untuk memahami definisi parameter pada Gambar 3.

Gambar 5. Hasil simulasi dengan LTspice, Vp=52 Volt AC, frekuensi=50Hz.

Gambar 5, menunjukkan bahwa dengan simulator rangkaian seperti LTspice kita bisa membandingkan antara perhitungan komputer (dengan simulasi) dengan perilaku tegangan/arus A.C.. Di sebelah kiri, bisa dilihat bagaimana pengaturan simulasi dilakukan. Bisa dilihat disimulasikan tanpa beban, artinya pada rangkaian terbuka (open circuit). Begitu juga pada pengujian sebenarnya dengan hardware berupa trafo, kita pada artikel ini hanya menggunakan trafo tanpa beban.

Gambar 6. Fasilitas di LTspice yang memungkinkan pengguna untuk mengetahui nilai rata-rata dan r.m.s.

Gambar 6, menunjukkan bahwa di LTspice kita bisa mengetahui nilai rata-rata (average) dan nilai R.M.S (root mean square) dari suatu gelombang yang disimulasikan.

Mari memulai untuk mempelajari gelombang A.C. dengan data percobaan dan simulasi yang kita miliki. Kita mulai dari Gambar 5, dari gambar itu kita bisa mengetahui bahwa frekuensi dari gelombang tegangan A.C. adalah 50 Hz. Dengan persamaan f= (1/T), dengan T adalah periode, kita bisa mengetahui untuk gelombang dengan frekuensi 50 Hz, periodenya adalah 20 mS. Dengan demikian pada Gambar 5, terdapat dua siklus gelombang penuh, 2*20 mS = 40 mS. Dengan cara yang sama untuk satu detik (1 S) terdapat 50 siklus penuh gelombang sinus (kembali, frekuensi 50 Hz).

Dari Gambar 5, kita juga bisa melihat adalah kesimetrisan pada dua siklus penuh gelombang sinus itu (dua puncak dan dua lembah). Jika antara titik puncak (tertinggi, bernilai paling positif) dengan garis horizontal 0 (nol) dapat dibayangkan sebagai daerah di bawah kurva, maka sama halnya dengan daerah antara lembah (titik terendah, paling negatif) dengan garis 0 dapat juga disebut sebagai daerah di bawah kurva. Jika daerah positif ditambahkan dengan satu daerah negatif pada satu siklus, maka gampang dilihat akan menghasilkan nilai nol. Daerah positif sama nilai absolutnya dengan daerah negatif. Seperti 5+(-5) = 0 atau seperti memiliki tabungan sejuta rupiah tetapi memiliki hutang sejuta rupiah juga.

Cara memahami dengan intuitif, melihat gambar kurva gelombang dapat dilengkapi dengan melihat hasil simulasi pada LTspice (atau perangkat lunak lainnya). Pada Gambar 6, panah nomor satu, kita bisa membaca berapa nilai rata-rata (average) suatu gelombang penuh sinus (dalam simulasi ini dua siklus). Ordenya nano (nV) tentu sangat kecil bila dibandingkan dengan tegangan puncak (Vpeak) yang sebesar 52 V. Pada Gambar 3, kita bisa melihat tegangan rata-rata yang terukur oleh DSO sebesar -800 mV, juga merupakan suatu nilai yang kecil bila dibandingkan dengan tegangan puncaknya. Kita bisa menganggapnya sebagai penyimpangan dan ketidaksempurnaan, kita untuk banyak keperluan praktis menganggapnya sama dengan nol volt pada gelombang sinus ideal.

Sebagai pelengkap dari pengukuran real dengan DSO dan simulasi dengan LTspice, serta pemahaman berdasar pengamatan dan nalar sederhana, kita bisa kembali dengan memahami dasar perhitungan matematisnya. Memang, tidak praktis untuk banyak keperluan sehari-hari tetapi cukup penting dalam fase belajar memahami dasar-dasar suatu bidang ilmu.

Gambar 7. Dasar perhitungan nilai rata-rata gelombang sinus ideal.

Pada Gambar 7, tercantum urutan penurunan persamaan yang membuktikan bahwa menurut perhitungan matematis, satu gelombang sinus ideal, nilai rata-ratanya akan sama dengan nol. Ini berlaku juga pada gelombang sinus untuk tegangan atau arus A.C., dengan catatan gelombangnya ideal. Dan karena sinus ideal sulit didapatkan maka biasanya nilai rata-ratanya tidak tepat nol, melainkan mendekati, dengan nilai yang kecil. Seperti yang ditampilkan pada Gambar 3, dan Gambar 6.

Di Gambar 7, bisa kita lihat rentang perhitungan luasan di bawah kurva dimulai dari 0 sampai 2*pi (dalam radian). Nilai hasil perhitungan integral berhingga itu dikalikan dengan nilai Vp (Vpeak, nilai tegangan puncak). Kemudian untuk memperoleh rata-rata maka dibagi dengan rentang satu siklus penuh gelombang, yaitu 2*pi. Hasilnya, lagi, sama dengan nol volt.

Karena nilai rata-rata (average atau mean) dari suatu gelombang sinus AC satu siklus penuh sama dengan nol, maka kita mengambil nilai separuhnya. Artinya rentang pengukuran luas hanya dari 0 sampai pi, dan pembagian untuk memperoleh nilai rata-rata juga dipergunakan pi (bukan; 2*pi). Dengan kata lain kita benar-benar hanya mengambil separuh gelombang sinus sebagai nilai rata-rata.

Gambar 8. Perhitungan untuk memperoleh nilai rata-rata setengah gelombang yang mewakili satu gelombang penuh.

Biasanya kita memperoleh nilai rata-rata tegangan atau arus A.C. (hanya setengah gelombang) sebagai 0.637 * Vpeak di banyak sumber acuan maupun bacaan. Dapat dilihat pada Gambar 8, nilai tersebut adalah pembulatan dari perkalian dengan hasil perhitungan nilai integrasi.

Mungkin sampai di sini tampaknya persoalan kita untuk memperoleh suatu nilai pengukuran dari gelombang sinus (tegangan atau arus) A.C. sudah selesai. Sebenarnya tidak, masih ada persoalan lain yang berhubungan dengan upaya untuk memperoleh nilai dari tegangan dan arus A.C. Misalnya, persamaan pada Gambar 8, dibangun di atas asumsi bawa bentuk gelombang sinus (sine) dari tegangan atau arus A.C. berbentuk ideal. Kalau bentuk gelombang sinus-nya berbeda jauh dari bentuk idealnya, maka nilainya juga akan meleset jauh. Ini bisa berbahaya. Misalnya jika kita mengetahui nilai puncak maka kita bisa menghitung nilai average-nya untuk hanya setengah gelombang dengan menggunakan 0.637 * Vpeak , tetapi jika bentuk gelombangnya (sebagai perwujudan dari nilai pengukuran tiap selang waktu tertentu) tidak ideal maka hasilnya akan berbeda dari kenyataannya. Perhitungan akan menghasilkan “pengukuran” yang salah.

Misalnya hal lain lagi, kita berkepentingan dengan energi dan laju energi itu dipergunakan. Kita ingin mengetahui daya. Pada sistem/rangkaian arus searah (D.C.) kita dapat relatif mudah mengukur laju penggunaan energi (yaitu daya). Bentuk yang paling mudah diperhatikan dan diukur sejak dahulu kala adalah bentuk panas. Dengan nilai tegangan listrik D.C. tertentu dan nilai tahanan tertentu kita akan mendapatkan aliran listrik dengan nilai tertentu pula (hukum Ohm). Nah kalau perkalian dari tegangan dan arus ini cukup besar (daya) maka kita akan mendapatkan laju penggunaan energi yang besar pula (nilai daya besar). Efeknya pada resistor atau komponen yang sifat resistifnya dominan, akan menimbulkan panas. Nilai besaran panas ini bisa kemudian diukur untuk diperbandingkan. Berapa daya yang diperlukan untuk menghasilkan panas yang sama, dalam keadaan semua faktor lain dibuat sama.

Dengan begitu sesungguhnya kita bisa membandingkan dua sistem sumber daya (sumber tegangan atau arus) berdasarkan efek panas yang dihasilkan pada resistor yang dipakai sebagai beban. Kita “tidak perlu” lagi mengetahui bentuk gelombang masukan (input) tegangan atau arus, dari sudut pandang ini. Kita hanya perlu membandingkan efek panas yang dihasilkan. Jika sistem, sebut saja, A diketahui dengan pasti parameter tegangan, arus dan dayanya sedangkan sistem B tidak kita ketahui, tetapi efek panas yang dihasilkan sama maka keduanya dapat kita katakan sama. Sistem B sama dengan sistem A, dari sudut pandang transfer energi. Cara pembandingan ini memudahkan kita jika gelombang periodik sistem B, katakanlah, tidak mudah untuk diukur.

Dihubungkan dengan pembahasan tentang nilai rata-rata gelombang sinus pada beberapa paragraf sebelumnya, kita bisa membayangkan suatu skenario. Jika gelombang periodik A.C. ternyata tidak berupa sinus murni, maka kita akan mengalami kesulitan pengukuran. Dengan alasan-alasan ini kita memerlukan parameter lain selain rata-rata (average atau mean). Parameter lain itu disebut R.M.S. (root-mean-square). Tinjauan fisika dari RMS sudah diungkapkan di beberapa paragraf sebelum paragraf ini, kita membandingkan efek panas yang dihasilkan.

Tinjauan matematis dari RMS (root-mean-square) juga didasarkan dari perhitungan terhadap luasan (daerah) di bawah kurva, dilakukan dengan menggunakan integral (integrasi). Secara sederhana sesungguhnya proses perhitungan mengikuti urutan penamaan; root-mean-square, akar dari rata-rata dari suatu nilai yang dikuadratkan.

Gambar 9. Penyelesaian perhitungan integrasi untuk mendapatkan nilai RMS dari gelombang sinus satu siklus.

Gambar 9 memberikan gambaran bagaimana suatu perhitungan matematis yang lebih formal dilakukan untuk memperoleh suatu nilai rms dari tegangan A.C. dengan bentuk gelombang sinus, satu siklus penuh. Dapat dilihat, sama dengan Gambar 7, rentang pengukuran satu siklus penuh yaitu dari 0 sampai 2*pi.

Gambar 10. Persamaan dan perhitungan RMS gelombang sinus satu siklus.

Gambar 10 merupakan ringkasan yang mempermudah untuk melihat dari mana asal datangnya nilai 0.707 yang terkenal itu🙂. Dari gambar ini kita bisa melihat penurunan persamaan bahwa
Vrms = 0.707 * Vpeak

Di penggunaan sehari-hari, untuk banyak pekerjaan dan keperluan biasanya kita jarang mempergunakan persamaan integral untuk mencari nilai rms dari suatu tegangan A.C.🙂. Sedikit perkecualian, mungkin untuk analisis sinyal.

Gambar 11. Nilai RMS dengan contoh tegangan simulasi 1 V, normalisasi.

Tidak ada yang baru pada Gambar 11,  gambar ini sengaja dibuat untuk menunjukkan normalisasi. Jika input sama dengan satu, maka nilai lainnya dibandingkan dengannya. Dalam hal ini nilai 0.707 (707 mV) dapat lebih mudah terlihat. Nah karena masih menggunakan perhitungan integral dengan masukkan tegangan puncak (Vpeak) maka perhitungan inipun masih rentan terhadap kesalahan jika gelombang bukan gelombang sinus ideal. Perhitungan Vrms = 0.707 * Vpeak, akan menghasilkan kesalahan, sama dengan perhitungan rata-rata. Tetapi kita mendapatkan suatu konsep yang baik yaitu RMS. Kita bisa mengukur berdasarkan efek panas yang dihasilkan, dan membandingkannya dengan sumber DC rata.

Dengan menggunakan DSO yang memiliki frekuensi cuplik yang tinggi dan memadai untuk tiap keperluan, kita bisa melakukan pengukuran gelombang dengan akurat. Kita bisa merekonstruksi bentuk gelombang yang diukur dengan tepat, sama dengan aslinya. Tetapi pada DMM murah yang banyak dijual, kita tidak seberuntung itu. Nilai tegangan A.C. yang ditampilkan adalah nilai pendekatan dengan mengasumsikan bahwa tegangan A.C. yang diukur adalah tegangan A.C. dengan bentuk gelombang sinus yang ideal. Sekali nilai tertinggi diperoleh, maka nilainya akan dikalikan dengan 0.707 untuk memperoleh nilai rms. Tentu saja seperti yang telah kita lihat pada gambar-gambar hasil pengukuran di artikel ini. Nilai itu bisa sangat mungkin salah, tidak menggambarkan kondisi sesungguhnya.

Alat ukur multimeter yang lebih baik sering disebut sebagai TrueRMS DMM. Sesuai dengan namanya, DMM (digital multimeter) jenis ini tidak menggunakan pendekatan dalam melakukan perhitungan. Melainkan mengukur nilai rms sesungguhnya, baik dengan menggunakan konversi panas, maupun dengan mendayagunakan frekuensi pencacahan yang tinggi. Hanya saja DMM dengan kemampuan True RMS ini harganya, biasanya, masih sangat mahal. Sampai saat tulisan ini dibuat, banyak yang dibuat oleh produsen dengan reputasi baik berharga lebih mahal dari DSO 100 MHz (1 GSa/s)😀.

Baiklah, dengan demikian kita sudah bisa memahami dari mana persamaan:

Vaverage = 0.637 * Vpeak

dan

Vrms = 0.707 * Vpeak

berasal🙂. Kita juga sudah memahami makna dari masing-masing cara pengukuran tersebut. Penting untuk mengingat bahwa Vaverage di sini adalah nilai untuk setengah gelombang dari 0 sampai pi (180 derajat). Sedangkan Vrms di persamaan di atas adalah nilai untuk gelombang penuh 2*pi (360 derajat).

Jadi saat membaca bahwa tegangan listrik PLN satu fase adalah 220 V, kita bisa segera mengingat bahwa itu adalah nilai tegangan RMS. Nilai tegangan puncaknya bisa bernilai sekitar 220*sqrt(2) atau kurang lebih sebanding dengan 311.127 VAC.

Update:

Gambar 12. Contoh perhitungan pembuktian dengan kalkulator Algeo.

Pada Gambar 12, perhitungan bisa dilakukan di sistem murah meriah, Android, yang dimiliki oleh banyak orang. Salah satu aplikasi yang telah dicoba mampu menyelesaikan perhitungan semacam ini adalah aplikasi Algeo.

Gambar 13. Perhitungan nilai rata-rata untuk setengah gelombang dengan kalkulator biasa.

Jika memiliki kalkulator elektronik fisik seperti ini, kita bisa memanfaatkannya untuk membuktikan perhitungan nilai rata-rata maupun nilai RMS.

Gambar 14. Perhitungan untuk nilai RMS gelombang sinus dengan hasil fraction.

Gambar 15. Perhitungan nilai RMS untuk gelombang sinus dengan hasil desimal.

screenshot_20161001-000242.jpgGambar 16. Perhitungan average untuk sinusoid dengan WolframAlpha.

screenshot_20160930-212738.jpgGambar 17. Perhitungan RMS untuk sinusoid dengan WolframAlpha.

screenshot_20160930-210735.jpgGambar 18. Perhitungan RMS untuk sinusoid dengan WolframAlpha.

Bacaan lebih lanjut yang baik dapat diperoleh di semua link di bawah ini:

  1. http://www.electronics-tutorials.ws/accircuits/average-voltage.html
  2. http://www.electronics-tutorials.ws/accircuits/rms-voltage.html
  3. ROOT MEAN SQUARE or ROOT-MEAN-SQUARE (RMS)
  4. http://www.learnabout-electronics.org/ac_theory/ac_waves02.php
  5. http://electrowavecorp.com/power-measurements/

Save

Mengapa sinusoid?

 

Artikel ini adalah pembaruan dari artikel yang sama di blog lama saya di pikirsa.wordpress.com.

 

Saat belajar mengenai elektronika, elektrikal, listrik atau sistem daya, kadang-kadang jika kita memiliki rasa ingin tahu yang cukup baik maka kita akan bertanya-tanya,”Mengapa gelombang arus bolak-baik ‘selalu’ berbentuk gelombang sinus?”

Meskipun tentu nyatanya di seluruh penjuru bumi tidak selalu bentuk gelombang arus bolak-balik itu merupakan gelombang sinus. Tetapi memang bentuk paling dasar dari berbagai gelombang periodik memang gelombang sinus. Pertanyaannya adalah: mengapa? Ada juga yang bertanya mengapa bentuk gelombang sinus yang dipilih untuk sistem arus bolak-balik?

Pertama, sebenarnya tidak ada yang manusia yang memilih bentuk sinusoid untuk AC (alternating current), setidaknya sebatas pengetahuan saya (AFAIK). Bentuk gelombang itu adalah konsekuensi langsung dari sistem fisis yang ada. Khusus untuk sistem kelistrikan kita bisa dengan mudah menghubungkannya dengan bentuk umum generator pembangkit tegangan.

Lalu apa hubungannya antara bentuk generator dengan bentuk gelombang yang naik-turun-berbalik arah itu? Pertama-tama mari perhatikan bentuk dari generator yang disederhanakan.

Gambar 1. Sumber gambar:
http://www.electronics-tutorials.ws/accircuits/sinusoidal-waveform.html

Untuk bisa memahami bagaimana tegangan dihasilkan dari perputaran rotor kita bisa melihat kembali aturan-tangan-kanan Fleming.

Gambar 2. Sumber gambar: http://goo.gl/7zpXJE

Gambar 3. Sumber gambar:
http://hvacreducation.net/ExampleLessons/module2_112-4.html

Dengan membandingkan antara Gambar 3 dengan Gambar 1, kita bisa melihat mengapa gelombang yang dihasilkan berupa gelombang sinus. Berikutnya untuk mendapatkan abstraksi yang lebih baik, kita bisa melihat pada Gambar 4 berikut.
Gambar 4. Sumber gambar:
http://giphy.com/gifs/wave-ac-exchange-F5rQlfTXqCJ8c

Gambar 5. Sumber gambar: http://goo.gl/i59TZl

Gambar 5 memberikan tampilan animasi yang lebih lambat dari Gambar 4, sehingga kita bisa melihat dengan lebih seksama korelasi antara posisi rotor dengan pada titik-titik pada bentuk gelombang yang dihasilkan.

Gambar 6. Sumber gambar:
http://www.technologyuk.net/mathematics/trigonometry/sine_function.shtml

Gambar 6 adalah sistem yang sama, hanya saja penempatan “generator” dan gelombang tegangan keluaran saja yang ditukar posisinya.

Gambar 7. Sumber gambar:
http://www.electronics-tutorials.ws/accircuits/sinusoidal-waveform.html

Untuk setiap saat tertentu (instantaneous) kita dapat menghitung berapa nilai tegangan saat itu sebagai fungsi dari sudut fase generator.

Gambar 8. Sumber gambar:
http://www.electronics-tutorials.ws/accircuits/sinusoidal-waveform.html

Pada Gambar 8 diperlihatkan beberapa posisi untuk sudut kelipatan 45°.

Gambar 9. Korelasi loop pada rotor dengan gelombang tegangan
Sumber gambar: http://goo.gl/4dO9KJ

Gambar 10. Sumber gambar:
https://en.wikipedia.org/wiki/Single-phase_generator

Gambar 11. Persamaan untuk menghitung nilai tegangan sesaat.
Sumber gambar: http://www.electronics-tutorials.ws/accircuits/sinusoidal-waveform.html

Gambar 12. Sumber gambar:
http://tinkerine.com/pseudo-sine-wave-generator-ditto/

Pada Gambar 12, kita bisa melihat bagaimana bentuk sinusoid dapat dihasilkan dari “generator” sederhana seperti itu.

Gambar 13. Sumber gambar: https://goo.gl/tf8LYR

Jika pada gambar-gambar sebelumnya kita melihat hanya dari satu sudut pandang saja, maka pada Gambar 13 kita bisa melihat dari dua sudut pandang. Yang pertama, tepat dari arah depan, persis seperti pada gambar-gambar sebelumnya dan satu dari samping. Dengan cara ini kita bisa melihat dimensi yang berbeda dari satu fenomena yang sama.

Gambar 14. Sumber gambar: https://goo.gl/tf8LYR

Gambar 15. Sumber gambar: https://goo.gl/tf8LYR

Gambar 16. Sumber gambar:
https://en.wikipedia.org/wiki/Phasor

Gambar 17. Sumber gambar: http://goo.gl/Q12G6K

Gambar 18. Sumber gambar:
https://en.wikipedia.org/wiki/Talk%3ASimple_harmonic_motion

Gambar 19. Sumber gambar:
http://www.iflscience.com/brain/math-gifs-will-help-you-understand-these-concepts-better-your-teacher-ever-did

Gambar 20. Sumber gambar: http://www.gailruby.com/SHMGraph.htm

Gambar 21. Sumber gambar: http://goo.gl/x765kH

Gambar 22. Sumber gambar:
http://www.mysearch.org.uk/website1/html/221.SHM.html

Gambar 23. Sumber gambar:
http://www.rmcybernetics.com/projects/experiments/experiments_resonance_simple_harmonic_motion.htm

UPDATE 24/09/2015

sumber: http://math-is-beautiful.tumblr.com/

sumber: http://rebloggy.com/

font cache: Ψ α β π θ μ Φ φ ω Ω ° ~ ± ≈ ≠ ≡ ≤ ≥ ∞ ∫ • ∆

 

Referensi tambahan: