Tulisan ini adalah tulisan yang diperbaharui dari tulisan sebelumnya pada blog lama,
pikirsa.wordpress.com.
In the beginning there was a switch.
Di elektronika, AFAIK (As Far As I Know) komponen yang sering menjadi maskot adalah resistor. Dari tiga komponen pasif dasar, RLC (memristor masih belum dijumpai secara massal), R adalah rajanya. Tetapi di elektronika daya (power electronics), sering dilupakan bahwa sebenarnya sakelar justru menjadi sangat penting sebagai dasar untuk memahami komponen aktif yang lebih lebih kompleks.
Sakelar adalah dasar yang sederhana untuk memahami diode. Diode menjadi sangat penting untuk memahami DIAC maupun SCR. SCR menjadi dasar untuk memahami TRIAC. Begitulah “jalannya”, selangkah demi selangkah berurutan. Sayangnya seperti yang saya kemukakan dalam tulisan sebelumnya. Sistematis itu sering tidak diminati, dianggap bertele-tele padahal untuk banyak hal dalam sains (science) dan teknik (enginering) tidak sistematis itu sangat berbahaya dan terbukti sering mencelakakan. Kalaupun jalan pintas (short-cut) untuk sesaat tampak “menghasilkan” dengan cara yang menyenangkan, tapi jangka panjang (dan bahkan menengah) sering terbukti lebih banyak merugikan daripada menguntungkan.
Ini terutama penting bagi siswa dan mahasiswa, mereka yang sedang membangun dan membentuk dasar-dasar dan kerangka pemahaman yang baik dan benar. Jalan pintas itu bisa diambil terutama jika kita sudah punya dasar pemahaman. Misalnya, di sistem Android ada beberapa aplikasi elektronika yang memudahkan perhitungan.Kita tinggal memasukkan input tanpa perlu mengutak-atik persamaan secara manual. Tapi tanpa berusaha untuk memahami dasarnya, fasilitas bantuan ini sebenarnya justru mencelakakan.
Nah setelah yakin bahwa belajar dengan sistematis adalah jalan yang terbaik, setidaknya dalam pengertian urut komponen, maka kita bisa memulai bahasan mengenai sakelar.
[su_panel border=”2px solid #00FF99″ shadow=”1px 2px 2px #00FF99″ radius=”5″]
Menurut KBBI, definisi sakelar adalah:
sa·ke·lar n penghubung dan pemutus aliran listrik (untuk menghidupkan atau mematikan lampu)
[/su_panel]
[su_panel border=”2px solid #00FF99″ shadow=”1px 2px 2px #00FF99″ radius=”5″]
Sedangkan menurut Oxford Dictionary of English, definisi switch (sakelar) adalah:
a device for making and breaking the connection in an electric circuit.
[/su_panel]
[su_panel border=”2px solid #00FF99″ shadow=”1px 2px 2px #00FF99″ radius=”5″]
Menurut IEEE definisi sakelar (switch) lebih diperinci sebagai berikut:
(4) (electric and electronics parts and equipment) A device for making, breaking, or changing the connections in an electric circuit. Note: a switch may be operated by manual, mechanical, hydraulic, thermal, barometric, or gravitational means, or by electromechanical means not falling within the definition of “relay.”
[/su_panel]
[su_panel border=”2px solid #00FF99″ shadow=”1px 2px 2px #00FF99″ radius=”5″]
Sedangkan definisi relay, masih menurut IEEE adalah:
(1) (general) An electric device designed to respond to input conditions in a prescribed manner and, after specified conditions are met, to cause contact operation or similar abrupt change in associated electric control circuits.
Notes:
1. Inputs are usually electrical, but may be mechanical, thermal, or other quantities, or a combination of quantities. Limit switches and similar simple devices are not relays. 2. A relay may consist of several relay units, each responsive to a specified input, with the combination of units providing the desired overall performance characteristic(s) of the relay.
(2) (electric and electronics parts and equipment) An electrically controlled, usually two-state, device that opens and closes electrical contacts to effect the operation of other devices in the same or another electric circuit.
Notes: 1. A relay is a device in which a portion of one or more sets of electrical contacts is moved by an armature and its associated operating coil. 2. This concept is extended to include assembled reed relays in which the armature may act as a contact. See also: switch.
[/su_panel]
Sakelar [sumber: Wikipedia.org]
Sakelar pushbutton [sumber: Wikipedia.org]
Dengan demikian secara sederhana sebuah saklar adalah sebuah pemutus atau penyambung. Bahkan sebuah kabel “jumper” dapat dipergunakan untuk menggantikan komponen sakelar yang sesungguhnya. Kemampuan daya hantar arus lalu bergantung pada bahan dan penampangnya.
Sebuah komponen switch ideal memiliki nilai tahanan sama dengan nol, sehingga jika dialiri arus maka tidak ada jatuh tegangan di antara kaki-kakinya. Tapi tentu saja komponen yang ideal seperti itu belumlah ada. Yang ada adalah sakelar yang nilai tahanannya amat kecil, dan untuk banyak keperluan dapat diabaikan. AFAIK, kita masih menunggu superkonduktor suhu kamar diproduksi massal dan berharga lebih terjangkau 🙂 .
Pada gambar berikut, diperlihatkan sebuah rangkaian sederhana dengan sebuah sumber tegangan dan dua resistor, tanpa sakelar. Sekali terhubung dengan catu daya arus akan terus mengalir melewati kedua resistor sampai catu dayanya kehabisan energi (semisal cell atau baterai) atau dilepaskan dari hubungan ke rangkaian.
Gambar berikut di bawah ini adalah contoh sederhana rangkaian pada gambar di atas yang telah diberi sakelar (switch). Pada pembahasan ini sakelar dimaknai secara sederhana sebagai penyambung dan pemutus pada rangkaian elektronik. Dalam simulasi dengan LTspice berikut, sebagai pengganti tangan manusia atau suatu sistem mekanis lainnya maka dipergunakan sumber sinyal (signal generator). Amplitudo dan frekuensi dari generator sinyal (sumber tegangan) akan mengendalikan kerja sakelar (switch).
Sedangkan gambar di bawah ini adalah waveform (gelombang) hasil percobaan rangkaian di atas.
Catu daya untuk rangkaian ini berupa tegangan DC yang stabil sebesar 12 Volt, asumsinya untuk simulasi ini sumber tegangan merupakan sumber tegangan ideal tanpa tahanan dalam.
Sakelar “Switch01” dikendalikan dengan menggunakan V(tegcontrol) dengan pengaturan sebagai berikut.
Sakelar “Switch01” yang dikendalikan “V(tegcontrol)” akan memutus dan menyambung rangkaian sederhana yang berisi resistor dan catu daya. Sebagai akibatnya, apakah ada arus yang mengalir untuk tiap saat (waktu) tertentu ditentukan oleh kondisi apakah pada saat itu sakelar sedang dalam kondisi tertutup (menyambung) atau terbuka (putus). Kondisi ini tergambar dalam bentuk gelombang pada I(S1) yaitu arus yang melintasi resistor dan sakelar. Juga bentuk gelombang tegangan pada V(nd1).
Bentuk gelombang I(S1) dan V(nd1) yang saling berkebalikan merupakan ciri khas dari sebuah sakelar, terutama sakelar yang mendekati karakteristik sebuah sakelar ideal. Pada kenyataannya selain adanya nilai tahanan yang lebih besar dari nol, juga diperlukan wantu gelombang dan arus untuk mencapai nilai steady-nya. Ada selang waktu yang selalu diperlukan untuk naik (rise) dan turun (fall). Untuk sakelar elektronis tegangan dan arus tidak mungkin begitu saja untuk berpindah dari satu nilai ke nilai lain tanpa selang waktu sedikit pun, baik dalam orde picodetik, nanodetik, mikrodetik maupun milidetik.
Jika pada simulasi di atas menggunakan catu daya D.C. maka bagaimana untuk simulasi dengan catu daya A.C.? Bagaimanakah bentuk gelombang keluarannya?
Bisa ditebak, setiap kali sakelar menutup maka arus akan mengalir, dan tegangan di terminal akan “hilang” (kondisi hubung pendek) sebagai berikut. V(n002) adalah tegangan di node n002 yang terletak antara switch dan R2.
Tahap berikutnya adalah tahap kita mulai “meniru” bagaimana gelombang dihasilkan oleh SCR. Bedanya kali ini saklar akan terhubung (on) sebelum off, sedangkan pada aplikasi SCR di elektronika daya (power electronics), SCR biasanya akan terlebih dahulu dalam kondisi off sebelum diaktifkan (on). Waktu penyalaan ini biasanya dikaitkan dengan sudut, dan dinamakan sudut penyalaan (firing angle). Ada juga istilah conduction angle yang merupakan (180 – firing angle) atau dalam radian (π – firing angle).
karya: Harley H. Hartman (Googling: Wolfram Alpha Hartman)
Berikut adalah gambar rangkaian sakelar yang dikonfigurasikan untuk “meniru” kerja SCR. Dengan urutan hidup-mati yang berkebalikan dari kerja SCR. Waktu hidup (lebar pulsa) selama 1 mS dan dinyalakan tanpa delay dari 0 mS.
Berikut adalah gambar gelombang keluarannya.
Eksperimen berikut menggambarkan perbedaan antara simulasi switch dengan SCR. Pada SCR (juga TRIAC) sekali gate terpicu dan batas latching terlampaui maka thyristor akan terus dalam kondisi on walaupun sinyal picu di gate sudah dihilangkan (dimatikan, off), sampai principal current nilainya turun di bawah nilai ambang holding current. Sedangkan pada switch hidup-mati, sambung-putus dapat dilakukan kapanpun. Untuk menunjukkan efeknya maka dipergunakan tunda nyala (delay) sebesar 4 mS. Komutasi untuk SCR tidak semudah ini, apalagi jika sumber catu daya adalah catu daya D.C.
Gelombang hasil simulasi.
Simulasi berikut dilakukan untuk mendekati hasil ideal yang bisa didapatkan pada percobaan dengan SCR. Kali ini sudut penyalaan, firing angle sengaja dipilih pada sudut 90°. Melalui simulasi ini diharapkan nantinya saat melakukan simulasi dan percobaan pada SCR maka kita sudah bisa menduga/menebak apa yang seharusnya kita dapatkan. Jika hasilnya tidak sama maka kita bisa segera menduga ada yang salah atau setidaknya ada yang jauh menyimpang.
Rangkaian berikut menggunakan delay sebesar 5 mS dari 0 mS. Waktu hidup sinyal sebesar 5 mS dengan periode sebesar 20 mS.
Berikut hasil simulasi, penyulutan tepat pada sudut 90° dan off pada 180°. Dapat dilihat bahwa tegangan pada node nd1 “terpotong” pada saat sakelar menutup.
Bentuk simulasi operasi TRIAC pada sudut penyulutan 90°.
Rangkaian simulasi switch untuk menyerupai unjuk kerja TRIAC yang disakelar tepat 90°.
Hasil simulasi:
UPDATE:
Bagian sisipan ini memperlihatkan simulasi penyakelaran yang dapat dilakukan dengan bantuan simulator TINA-TI.
Demikianlah tulisan ini saya buat dalam semangat untuk belajar bersama, dan agar siswa/mahasiswa terinspirasi untuk belajar dengan cara yang lebih sistematis. Belajar elektronika daya dengan cara melompat-lompat memang menarik, dan terkesan efisien. Terutama jika kita belum termotivasi untuk menekuninya sebagai sebuah ilmu dan sebagai sarana untuk bertransformasi. Tetapi percayalah anda akan lebih banyak mengalami kerugian daripada keuntungan. Untuk mahasiswa ~> elektronika daya (elda, power electronics) sebenarnya lebih dari sekedar sebuah mata kuliah, tetapi bahkan dalam bentuk dan praktinya yang paling sederhana ilmu ini adalah sarana transformasi diri yang dahsyat. Saya tidak membual, silahkan dicari sebanyak mungkin informasi pembanding. Saya yakin anda akan semakin menemukan kebenarannya.
Sebelum belajar TRIAC, hendaknya meluangkan waktu untuk belajar SCR, dan sebelumnya belajar diode dan sebelumnya switch, seperti yang telah coba saya tuangkan di sini, sebagai awalan.