Contoh penggunaan Buck Boost converter

Berikut ini sekadar contoh bagaimana buck-boost converter dapat dipergunakan sebagai bagian dari sistem catu daya.

Buck boost converter komersial sekarang telah banyak dijual bebas di toko-toko online lokal Indonesia. Saya dan anda dapat memanfaatkanya dengan lebih mudah untuk banyak keperluan.

Gambar 1

Sistem catu daya (power supply) dapat terdiri dari beberapa bagian (sub system). Misalnya yang ditampilkan pada Gambar 1. Beberapa bagian dari sistem catu daya dikumpukan bersama dan diwadahi dalam satu kotak.

Di era saat saya menulis artikel ini, perdagangan antar negara sudah lebih lancar dari masa-masa sebelumnya. Didukung dengan kemudahan transaksi keuangan dan kemudahan akses terhadap sarana transportasi udara, membuat lebuh banyak orang dapat dengan mudah mendapatkan barang-barang impor. Misalnya komponen dan papan sistem elektronik dari China, sudah jauh lebih mudah ditemui di toko-toko online di kota-kota besar di Jawa dan Sumatera.

Kesemua papan sub sistem dan komponen itu sudah siap untuk dirangkai menjadi sistem yang lebih besar. Ini bisa dilakukan dengan waktu yang lebih singkat dari sebelumnya.

Di Gambar 1, catu daya yang rangkai terdiri dari (sub) sistem yang menyearahkan tegangan AC menjadi DC dan menurunkannya dari 220 VAC menjadi sekitar 12 VDC.

Bagian sub sistem berikutnya adalah papan buck-boost converter, di kotak hanya diberi tulisan penanda sebagai “Boost”. Parameter kerja dari papan ini dapat dilihat di Gambar 2. Papan sub sistem yang ketiga adalah buck converter berbasis LM2596.

Catu daya yang dirakit (DIY: Do It Yourself) telah diperlengkapi dengan indikator tegangan. Adanya fasilitas ini cukup membantu untuk mempercepat pengaturan. Meskipun, di Gambar 1 dapat dilihat tampilan indikator ini tidak sama dengan yang ditunjukkan DMM (digital multimeter).

Gambar 2
Gambar 3

Pada Gambar 3, terlihat hasil pengaturan bagaiamana jika buck boost converter (ditandai sebagai “Boost”) dan buck converter diatur ke posisi tegangan output minimal (dengan potensiometer). Keluaran sekitar 1,1 V dengan masukan sekitar 12,5 V.

Pada Gambar 4 di bawah ini, semua konverter diatur ke batas keluaran maksimal. Untuk sistem ini, indikator buck converter kadang-kadang menunjukkan nilai yang lebih tinggi dari nilai indikator untuk input-nya. Padahal sebenarnya tidak demikian jika diukur dengan menggunakan DMM yang memiliki akurasi yang lebih baik. Misalnya pada Gambar 5, terlihat bahwa tegangan masukan DC untuk semua dc-to-dc converter adalah 12,74 V, bukan 12,6 V.

Gambar 4
Gambar 5
Gambar 6
Gambar 7

Papan sistem pada Gambar 6 dan Gambar 7 adalah contoh sebuah papan (sub) sistem buck-boost converter. Keduanya adalah tipe yang sama yang dijual oleh toko online yang berbeda. Keterangan lebih lanjut ditempatkan di bagian link.

Gambar 8

Uji coba papan buck-coost converter yang serupa pada Gambar 6 dan Gambar 7 dilakukan dengan mempergunakan tegangan masukan sekitar 8,4 Vdc seperti yang terlihat di Gambar 8. Pada percobaan itu diatur agar tegangan keluaran sebesar 24 V (24,03 V).

Sedangkan pada percobaab seperti pada Gambar 9, tegangan masukan 8,4 V diturunkan ke tingkat 5 V (4,966 V).

Dengan mempergunakan buck-boost converter pula, suatu tingkat tegangan keluaran dapat dijjaga tetap (dengan beban yang proporsional untuk kemampuan daya sistem), sekalipun nilai masukannya naik ataupun turun di bawah nilai tegangan keluaran.

Gambar 9
Gambar 10

Pada Gambar 10 dan Gambar 11 diperlihatkan bagaimana buck-boost converter berusaha untuk mempertahankan level tegangan di kisaran 7 V sekalipun tegangan masukan berubah dari sekitar 11 V menjadi sekitar 5V.

Gambar 11

TEXT:

VIDEO:

Bahan pengantar kuliah tentang buck converter

Sebelum melihat lebih jauh dan melatih simulasi rangkaian untuk buck converter, sebaiknya terlebih dahulu melihat kembali post tentang simulasi untuk linear step-down. Dari post tersebut dapat diperoleh gambaran kemungkinan mengapa para pendahulu memikiran alternatif lain dari regulator linier yaitu regulator non-linier seperti buck converter.

Kemudian dilanjutkan dengan melihat kembali artikel mengenai penyakelaran pada sistem DC. Hal ini berguna untuk melihat rekonstruksi rangkaian evolusi dari sakelar ideal, BJT dan MOSFET. Dalam artikel itu bisa dilihat contoh dasar low-side swithing dengan NPN maupun N-MOSFET, dan high-side switching dengan PNP maupun P-MOSFET.

Setelah itu, dapat dilanjutkan dengan meninjau kembali sejenak tentang prinsip dasar bagaimana mempergunakan MOSFET sebagai sakelar elektronik. Di sana dapat dilihat kembali bagaimana cara MOSFET dioperasikan antara dua keadaan yaitu cut-off dan triode (ohmic).

 

MENURUNKAN TEGANGAN DENGAN BJT

Sebelum masuk ke penurun tegangan yang mempergunakan rangkaian tidak linier (on-off) kita akan melihat kembali rangkaian penurun tegangan linier, kali ini dengan mempergunakan BJT NPN.

Gambar 1.

Gambar 2.

Dapat dilihat bahwa dengan mempergunakan BJT pada rentang operasi linier, kita dapat menurunkan tegangan dari level catu daya ke level yang kita perlukan pada beban. Efisiensi untuk sistem ini berada pada kisaran 55,9 %. Transistor NPN mengeluarkan daya kira-kira sebesar 1,9 Watt berupa panas.

 

SIMULASI BUCK CONVERTER DENGAN LTSPICE

Gambar 3.

wp-1459193542287.jpegGambar 4.

Perhitungan untuk mencari nilai average dan RMS dapat mengacu dan mengikuti contoh pada halaman di situs pada link ini.

Gambar 5. Topologi dasar buck converter (sumber: SLVA477B)

 

Gambar 6. Topologi dengan komponen dan pengendali MOSFET yang lebih realistis
(sumber: SLVA057)

Gambar 7. Simulasi rangkaian tanpa induktor dan diode

Gambar 8.

Gambar 9.

Gambar 10.

Gambar 11.

Gambar 12.

Gambar 13.

Gambar 14.

Gambar 15.

 

CONTOH KONFIGURASI RANGKAIAN BUCK CONVERTER

 

Gambar 16. (Sumber: microcontrollerslab.com)

Gambar 17. (Sumber: AVR Tiny Buck Converter)

 

Gambar 18. (Sumber: KD1JV on boost and buck converters implemented with an ATtiny13V)

 

Gambar 19.

 

Gambar 20. (Sumber: Arduino-based Switching Voltage Regulators)


SUMBER BELAJAR UTAMA:

  1. Buck Converter Design Example
  2. Basic Calculation of a Buck Converter’s Power Stage, SLVA477B
  3. Buck Converter Basics

SUMBER PEMBANDING:

  1. Buck Converter Design
  2. Understanding Buck Power Stages in Switchmode Power Supplies, SLVA057

KOMPONEN:

  1. Buck DC/DC Converters