Dasar operasi power stage dari flyback converter tolopogy

[ [ Flyback Converter Topology ] ]

 

Di artikel sebelumnya telah diperkenalkan tentang istilah flyback converter topology. Juga secara bertahap dipaparkan tentang bagaimana suatu ‘flyback transformer’ sebenarnya berbeda dengan transformer pada umumnya. Di sana diperkenalkan (ulang) tentang megnetizing inductance yang penting untuk kerja suatu konverter flyback. Di artikel ini akan dilanjutkan tentang dasar operasi suatu flyback converter. Masih dengan pola yang sama yaitu menggunakan sumber-sumber alternatif yang bebas pakai yang telah dibandingkan dengan sejumlah textbook berikut ini.

Favor Quotes - 64 quotes on Favor Science Quotes - Dictionary of ...

 

 

Untuk acuan mengenai dasar topologi flyback (power stage) dapat ditemui di beberapa textbook antara lain:

  1. D. W. Hart, Power electronics, 1st ed. New York: McGraw-Hill Higher Education, 2010.
    Pembahasan tentang flyback converter ada di sub-bab 7.3 THE FLYBACK CONVERTER, halaman 267.
  2. I. Batarseh and A. Harb, Power Electronics: Circuit Analysis and Design, 2nd ed. 2018 edition. Springer, 2017.
    Pembahasan tentang flyback converter ada di sub-bab 5.4.1 Single-Ended Flyback Converter, halaman 303.
  3. W. P. Robbins, T. M. Undeland, and N. Mohan, Power electronics: Converters, applications, and design, 3rd ed. United States: John Wiley and Sons (WIE), 2002.
    Pembahasan tentang flyback converter ada di sub-bab 10-4-2 FLYBACK CONVERTERS, halaman 308.
  4. P. T. Krein, Elements of power electronics. New York, NY: Oxford University Press, 1997.
    Pembahasan tentang flyback converter ada di sub-bab 4.4.3 The Flyback Converter, halaman 136.
  5. M. H. Rashid, Ed., Power Electronics Handbook, Fourth Edition, 4 edition. Butterworth-Heinemann, 2017.
    Pembahasan tentang flyback converter ada di sub-bab 10.5.2 Flyback Converter, halaman 281.
  6. A. M. Trzynadlowski, Introduction to Modern Power Electronics, 3 edition. Wiley, 2015.
    Pembahasan tentang flyback converter ada di sub-bab 8.3.1 Single-Switch-Isolated DC-to-DC Converters, halaman 384.
  7. B. Choi, Pulsewidth modulated DC-to-DC power conversion: Circuits, dynamics, and control designs. United States: John Wiley & Sons, 2013.
    Pembahasan tentang flyback converter ada di sub-bab 4.4 FLYBACK CONVERTER, halaman 145.
  8. J. Pollefliet, Power Electronics: Switches and Converters, 1 edition. Academic Press, 2017.
    Pembahasan tentang flyback converter ada di sub-bab 13.4 FLYBACK CONVERTER, halaman 14.
  9. V. Jagannathan, Power Electronics : Devices and Circuits. PHI Learning Pvt. Ltd., 2011.
    Pembahasan tentang flyback converter ada di sub-bab 5.11.1 Fly Back Converter, halaman 226.

Seperti halnya di artikel-artikel sebelumnya untuk artikel ini pun saya akan mencoba menggunakan sumber alternatif  yang lain, untuk belajar. Informasi yang sepadan dengan textbook komersial untuk dipergunakan sebagai bahan belajar, tetapi bersifat gratis dan bisa bebas dimiliki oleh mahasiswa. Di sepanjang artikel ini akan ada beberapa link (tautan) ke sejumlah dokumen yang bisa dipakai untuk belajar mengenal topologi flyback converter. Judul-judul yang saya ambil screenshot-nya ini hanya sebagai teaser, ada banyak lagi yang juga menarik yang bisa dipakai untuk belajar.

Gambar 1. Contoh materi/sumber informasi. 

[ Semua gambar di bawah ini dapat dilihat versi tampilan yang lebih besar dengan cara melakukan klik-kanan di gambar lalu memilih “Open image in new tab” pada browser. ]

 

 

Gambar 2. Rangkaian dasar topologi flyback [sumber].

Topologi flyback adalah topologi turunan dari topologi buck-boost. Peran magnetizing inductance LM di Gambar 2(a) berfungsi sama seperti induktor L di konverter buck-boost. Saat sakelar transistor Q1 menutup/menghantar, energi dari sumber DC (yaitu Vg) disimpan di LM, saat ini diode di sisi sekunder tidak dapat menghantar. Kemudian saat berikutnya, saat diode D1 menghantar, energi yang tadi tersimpan ditransfer ke beban. Pemindahan ini mengikuti skala tegangan dan arus yang diatur melalui rasio gulungan sisi primer dan sekunder dari ‘flyback transformer’ {{1}}.

Sebagaimana beberapa konverter lain, kondisi flyback converter dapat dengan lebih mudah dijelaskan dengan membaginya ke dalam dua kondisi operasi. Yang pertama saat sakelar (MOSFET) menutup, seperti Gambar 2(b). Yang kedua saat sakelar (MOSFET) membuka seperti Gambar 2(c). Saat sakelar menutup sisi primer merupakan rangkaian tertutup sedangkan diode dalam keadaan ‘membuka’. Saat sakelar membuka, rangkaian primer terputus dan diode dimodelkan seperti terhubung singkat (ON). 

Gambar 3. Dua kondisi operasi flyback converter {{2}}.

A very important aspect is that flyback transformers have an air gap, which allows energy storing without the risk of core saturation occurrence.AN2085A Designing Applications with MCP166X High Output Voltage Boost Converter Family

Kondisi di Gambar 3(a) adalah kondisi ON TIME, yaitu saat bagian primer dari ‘flyback transformer‘ terhubung dalam sebuah loop tertutup ke sumber tegangan VIN. Ini terjadi karena sakelar SW tertutup. Arus primer dan magnetic flux di ‘flyback transformer‘ meningkat. Saat ini adalah saat di mana energi di simpan di inti dari ‘flyback transformer‘. Karena dot convention, tegangan induksi di sisi sekunder saat ini memiliki polaritas terbalik dibanding sisi primer (negatif). Maka diode tidak bisa menghantar karena teagangan di anode lebih negatif daripada tegangan di katode, diode seperti sakelar yang dalam keadaan terbuka. Di fase ini jika COUT telah menyimpan energi dari siklus sebelumnya, maka beban akan disuplai energi oleh kapasitor tersebut.

Kondisi di Gambar 3(c) adalah kondisi OFF TIME, yaitu saat bagian primer dari ‘flyback transformer‘ terputus dari loop tertutup ke sumber tegangan VIN, menjadi sirkuit terbuka. Ini terjadi karena sakelar SW terbuka. Arus primer dan magnetic flux di ‘flyback transformer‘ menurun. Polaritas sisi sekunder menjadi ‘positif’, tegangan di sisi anode menjadi lebih positif terhadap ground dan katode. Karena itu di fase ini diode menghantar, menjadi seperti sakelar tertutup. Sisi sekunder menalirkan arus ke COUT dan RL. Jika flyback converter beroperasi di mode DCM maka seluruh energi yang tersimpan di magnetizing inductance sisi primer akan seluruhnya ditransfer ke beban.

Gambar 4. Flyback Converter Waveforms [AN2085].

Notasi yang dipakai di Gambar 4, VSW adalah tegangan di sakelar, IP adalah arus di sisi primer flyback transformer, IS adalah arus di sisi sekunder. 

Gambar 5. slup254 Under the Hood of Flyback SMPS Designs.

Keterangan berikut ini saya ambil dari sumber di Gambar 5. Sengaja tidak saya terjemahkan ke dalam Bahasa Indonesia, silakan dibandingkan dengan keterangan yang saya ketik di bagian sebelum ini. Semoga bagian ini dan seterusnya dapat menjadi contoh bagaimana suatu ‘bangunan pengetahuan’ dikonstruksi dari berbagai sumber. Terutama untuk pengetahuan yang sudah bersifat umum bagi umat manusia, dan bukan sesuatu yang sangat baru, misalnya baru dalam hitungan jam atau hari dan hanya di kalangan berjumlah kecil yang terbatas saja.

Gambar 6. Transfer of Energy slup254.

Gambar 7. slup261 Under the Hood of Flyback SMPS Designs.

Sebagaimana di Gambar 7, ada lebih dari dua mode operasi untuk flyback converter, yaitu selain CCM dan DCM. Bahkan masih ada yang tidak dicantumkan di kutipan tabel di Gambar 7, yaitu Boundary Mode.

Gambar 8. Operasi CCM dan DCM serta perhitungan duty cycle [slup261].

Gambar 8 menunjukkan gelombang (waveform) untuk masing-masing mode operasi, CCM dan DCM beserta perhitungan duty cycle untuk masing-masing mode operasi.

Gambar 9.  Aliran arus di flyback converter power stage [slup261].

Bisa diperhatikan di Gambar 9, skema paling kanan menunjukkan bahwa untuk mode DCM energi dipindahkan ke beban sampai tuntas di waktu sakelar terbuka.

Gambar 10. CCM vs. DCM.

Berikut ini adalah salah satu contoh bagaimana suatu keterangan mengenai rangkaian / topologi / komponen / sistem tertentu dapat ditemukan di dalam dokumen yang memiliki judul yang justru menunjukkan topik bahasan yang berbeda. Justru kadang-kadang dengan cara ini kita bisa mengerti hubungan antara suatu konsep dengan konsep lainnya, antara satu hal dengan hal lainnya. Bagaimana sesuatu bisa berevolusi menjadi sesuatu yang lain.

Penjelasan mengenai flyback converter power stage ini ditemukan di dokumen yang membahas mengenai buck-boost converter. Dokumen seperti ini dapat ditemukan dengan bantuan mesin pencari di Internet seperti Google atau Bing.

Gambar 11. Flyback Power Stage {{3}}.

 

Unknown Quotes - 182 quotes on Unknown Science Quotes - Dictionary ...

 

[[1]]The Flyback Converter, Lecture notes ECEN4517[[1]] [[2]]AN2085A Designing Applications with MCP166X High Output Voltage Boost Converter Family[[2]] [[3]]slva059b Understanding Inverting Buck-Boost Power Stages in Switch Mode Power Supplies[[3]]

font cache: Ψ α β π θ μ Φ φ ω Ω ° ~ ± ≈ ≠ ≡ ≤ ≥ ∞ ∫ • ∆

Double winding inductor (flyback transformer)

[ [ images & links ] ]
 

Di antara topologi dasar konverter yang umum dipelajari, flyback converter memiliki keunikan tersendiri. Pertama, dalam bentuk dasarnya ini adalah konverter yang memiliki galvanic isolationOutput dan input dipisahkan dengan sebuah transformer (mutual inductance). Meskipun menurut beberapa sumber penggunaan istilah transformer untuk komponen mutual inducance di flyback ini sebenarnya ‘bermasalah‘. Namun untuk sementara ini demi penyederhanaan proses belajar, istilah transformer (trafo) masih dapat dipergunakan. Nanti kita akan kembali dengan singkat ke masalah ini di bagian lain.

Thomas Mann - Order and simplification are the first steps...Gambar 1. Penyederhanaan.

Keunikan kedua adalah bahwa flyback converter tidak hanya dapat diterapkan di sistem dc-dc converter yang bertegangan sangat rendah. Beberapa sistem flyback converter dirancang untuk dapat bekerja di level tegangan yang lebih tinggi, level tegangan jala-jala/utilitas. Hanya diperlukan diode penyearah dan filter/tapis, tidak diperlukan trafo tambahan sebagai penurun tegangan di sisi input suatu sistem flyback converter

[ Semua gambar di bawah ini dapat dilihat versi tampilan yang lebih besar dengan cara melakukan klik-kanan di gambar lalu memilih “Open image in new tab” pada browser. ] 

Sebelum mempelajari tentang cara kerja (theory of opearation/mode of operation) ada baiknya sejenak mengulang tentang dot convention di transformer. Bahan dan tautan yang lebih banyak terdapat di artikel ini.

Gambar 2. Tegangan sisi primer satu fase dengan sisi sekunder.

Gambar 3. Tegangan sisi sekunder berbalik fase dari sisi primer.

Gambar 4. Simulasi dot convention dengan gelombang sinus di LTspice.

Semua transfomer dari Gambar 2 sampai Gambar 4 masih secara electrical terhubung dengan adanya ground node bersama. Ini hanya dipakai sekadar untuk memudahkan penunjukkan polaritas saja, yaitu menggunakan gnd acuan bersama. Dalam praktik ada banyak aplikasi yang benar-benar memisahkan kelistrikan sisi primer dengan sisi sekunder trafo. Cara kerja trafo flyback yang dipergunakan untuk menyimpan sementara dan memindahkan energi tidaklah sama persis dengan transformer (mutual inductance) yang biasa ditemui di sistem penyearah untuk bekerja di jala-jala utilitas (PLN). Di flyback converter, inti ‘transformer’ memang dirancang untuk memiliki kemampuan menyimpan energi (dengan adanya celah udara). Namum demikian prinsip dot convention tetap berlaku dan penting dipahami untuk mengerti cara kerja topologi flyback converter. Selain di artikel sebelumnya, kutipan dari textbook ini juga penting diketahui {{1}}.

The dot convention is used to indicate relative polarity between the two windings. When the voltage at the dotted terminal on one winding is positive, the voltage at the dotted terminal on the other winding is also positive. When current enters the dotted terminal on one winding, current leaves the dotted terminal on the other winding.Daniel W. Hart

Topologi  flyback converter sebenarnya dikembangkan dari buck-boost converter topology. Topologi buck converter sangat bermanfaat karena memiliki efisiensi yang tinggi dibanding topologi yang lain, tetapi hanya bisa dipakai untuk menurunkan level tegangan. Topologi boost converter bermanfaat karena mampu menaikkan level tegangan keluaran dari level tegangan masukan. Tetapi konverter ini pun hanya bisa menaikkan, tidak bisa menurunkan tegangan. Karena itu, diperlukan suatu konverter yang mampu melakukan keduanya. Suatu buck-boost converter dibuat untuk bisa melakukan keduanya, sekalipun efisiensinya lebih rendah dari buck converter. Istilah buck-boost converter bisa bermakna luas sebagai rumpun konverter atau bisa juga bermakna sempit yaitu merujuk hanya pada salah satu bagian kelompok saja. Dalam pengertian luas, buck-boost converter terdiri dari sistem yang non-inverting dan sistem inverting. Dalam makna yang sempit, jika disebut buck-boost converter maka sebenarnya yang dimaksud adalah inverting buck-boost atau yang kadang disebut sebagai classical buck-boost converter. Sekalipun lebih versatile karena bisa menaikkan atau menurunkan tegangan, tetapi inverting buck-boost topology memiliki kekurangan. Sebagaimana namanya, polaritas tegangan keluaran akan selalu berkebalikan dari masukannya. Maka dari itu diperlukan perubahan tahap berikutnya, evolusi topologi masih dilanjutkan. Salah satu bentuk non-inverting buck-boost topology adalah rangkaian SEPIC. Evolusi buck-boost topology juga kemudian menjadi flyback topology yang tetap memiliki kemampuan untuk menaikkan dan menurunkan tegangan. Tipe ini berpotensi memiliki isolasi antara input dan output. Meskipun pada beberapa sistem, keberadaan umpan balik untuk pengendalian membuat isolasi ini tidak lagi sempurna. Granary of Quotes: Progress and change - George Bernard Shaw

Gambar 5. Evolusi dari buck-boost ke flyback [sumber].

Gambar 5 menunjukkan perubahan yang digambarkan secara bertahap, dari satu topologi ke topologi lainnya. Untuk bisa memahami mengapa pergeseran posisi diode dari (c) ke (d) di Gambar 5, perlu kembali mengingat tentang dot convention. Keterangan lebih rinci bisa dibaca di sumber gambar{{2}}.

Gambar 6. Model ‘flyback transformer’ dengan magnetizing inductance.

Model transformer di rangkaian di Gambar 5 (d) adalah bentuk rangkaian yang umum untuk menggambarkan sebuah topologi flyback converter. Namun demikian sebenarnya gambar itu tidak tepat karena model ‘transformer’ itu belumlah cukup untuk sebuah ‘flyback transformer’. Di Gambar 6 terlihat ada sebuah induktor lain di sebelah kiri model trafo dengan tulisan LM. Notasi LM atau Lm dipergunakan untuk menandai suatu magnetizing inductance, yang dipakai untuk mewakili kondisi magnetisasi inti (magnetization of the core) {{3}}. Yaitu kondisi yang menggambarkan magnetic flux m) di inti, terutama saan sisi sekunder berada dalam kondisi open circuit. Sebelum melanjutkan bahasan, ada baiknya kita membandingkan beberapa sumber kutipan berbeda mengenai fenomena yang sama (yaitu magnetizing inductance). Selain itu sekaligus juga membandingkan kutipan dari textbook komersial (#fairUse, #educational) dengan kutipan dari sumber yang bebas diakses di Internet.  Barack Obama Quote: “Literacy is the most basic currency of the ...

This inductance is termed as the magnetizing inductance because it is associated with the magnetizing current. Equation (2.34) indicates that the magnetizing inductance corresponds to the inductance that is evaluated at the primary side of the transformer with the secondary winding removed or unaccounted for, … The flyback converter utilizes the magnetizing inductance of the isolation transformer as its functional inductance. Therefore, the isolation transformer should be fabricated in such a way that could offer a controllable magnetizing inductance. One easy method to achieve this goal is to create a gap in the magnetic path of the transformer. This is commonly implemented by introducing an air gap between the magnetic cores, which effectively determines the magnetizing inductance of the isolation transformer. {{4}} Byungcho Choi
In some applications in this chapter, the ideal transformer representation is sufficient for preliminary investigation of a circuit. The ideal model assumes that the series resistances and inductances are zero and that the shunt elements are infinite. Asomewhat better approximation for power supply applications includes the magnetizing inductance Lm, as shown in Fig. 7-1d. The value of Lm is an important design parameter for the flyback converter… Energy is stored in Lm when the switch is closed and is then transferred to the load when the switch is open. {{5}}Daniel W. Hart
Mari bandingkan keterangan di textbook dengan akses yang sebenarnya terbatas di atas dengan beberapa sumber yang bisa bebas diakses sebagai berikut ini.
The behavior of most transformer-isolated converters can be adequately understood by modeling the physical transformer with a simple equivalent circuit consisting of an ideal transformer in parallel with the magnetizing inductance. The magnetizing inductance must then follow all of the usual rules for inductors; in particular, volt-second balance must hold when the circuit operates in steady-state. This implies that the average voltage applied across every winding of the transformer must be zero.The Flyback Converter, Lecture notes, ECEN4517

Kutipan dari ‘Lecture notes ECEN4517’ di atas dapat lebih mudah dipahami jika sambil sesekali melihat Gambar 6. Magnetizing inductance (LM atau Lm) di sistem flyback akan berfungsi sebagai penyimpan energi sementara dari sisi primer sebelum nanti ada saatnya dipindahkan ke sisi sekunder.

Khusus di bagian berikut ini, kutipan berasal dari mata kuliah Green Electronics yang diampu oleh Prof. William Dally dari Standford.

Gambar 7. Model transformer [sumber]

The flyback converter is interesting because it uses the magnetizing inductance of the transformer for energy storage. This is fundamentally different than the other isolated converters for which the magnetizing inductance is a parasitic element.EE155/255 Course Notes
Unlike the transformers in other isolated converters, the transformer in a flyback converter stores energy. During the First half of each cycle, the primary winding stores energy in the magnetizing inductance. This energy is released during the second half of the cycle. Because its primary function is to store energy, a flyback transformer is designed like an inductor, not a transformer.EE155/255 Course Notes

Gambar 8. Magnetizing inductance  dan air gap [sumber screenshot].

Gambar 9. Peran magnetizing inductance di topologi flyback [sumber].

Gambar 10. Fungsi dasar transformer [sumber]

 

The magnetizing inductance is solely a magnetic property of the core and is not at all effected by the load current drawn by the transformer secondaries..LECTURE 34 HIGH FREQUENCY TRANSFORMER
Khusus untuk bagian ini, semua kutipan berasal dari dokumen handbook karya Lloyd H. Dixon, Jr

Gambar 11. Screenshot definisi trafo dan induktor.

Gambar 12. Screenshotmagnetic core.

Gambar 13. Screenshotcore limitations.

Gambar 14. Screenshotenergy storage.

Gambar 15. Magnetics in SMPS [sumber].

Gambar 16. Transformer.

Gambar 17. ‘Transformer’ w/energy storage.

Gambar 18. Operasi dari trafo.

Gambar 19. Flyback transformer.

Dari sejumlah pemaparan yang dikutip di atas dapat dimaklumi jika Slobodan Cuk menyetujui pendapat berikut ini:

“Really the ‘flyback transformer’ does not exist, it is a simple inductor where all the energy to be transferred is stored in GAP.”

Juga berpendapat sebagai berikut:

Definition of the COUPLED INDUCTORS is that once the coupling is removed that converter still must operate.

 

Di awal saya telah menuliskan clue bahwa sesungguhnya transformer yang dipergunakan di topologi flyback tidaklah persis sama dengan yang lebih umum secara awam ditemui untuk bekerja di sistem AC utilitas. Yaitu trafo yang dipakai untuk menaikkan/menurunkan tegangan dan melakukan isolasi. Berikutnya saya sampaikan simulasi trafo dalam bentuk yang paling sederhana sebagai komponen mutual inductance untuk baseline. Lalu dari sana saya cuplik bagaimana penggunaan model flyback transformer yang lebih mendekati kenyataan, di Gambar 5 dan Gambar 6. Di sana bisa dilihat keberadaan LM atau Lm yang di flyback converter akan berperan penting. Untuk memahami magnetizing inductance saya tampilkan kutipan dari beberapa textbook komersial, ini berfungsi sebagai pembanding dan tolok ukur. Saya tampilkan sejumlah kutipan dokumen yang mengandung informasi yang diperlukan. Informasi ini dikutip dan bisa diperbandingkan satu sama lain dan terhadap kutipan dari textbook.  Ini adalah contoh bagaimana kita bisa mengkonstruksi suatu pemahaman terhadap suatu hal dari sebaran kepingan informasi dari berbagai sumber. Menentukan batas kedalaman bahasan yang kita perlukan, menimbang mana saja bahan yang dipakai dan mana yang setidaknya untuk sementara belum dipakai. Ini adalah bagian dari membangun dan memperkuat literasi. 

Di artikel ini dan beberapa artikel lain, kedalaman bahasan mengenai induktor dan transformator (transformer) akan dibatasi. Bagi yang belum mengenal sama sekali, pokok bahasan teori medan, hal-ihwal mengenai elektromagnetik, EMI/RFI, induktor, dan transformer berikut semua variasi/turunannya adalah bahasan yang pelik. Saya tidak bermaksud menulis di bagian ini untuk menakut-nakuti. Sebaliknya justru untuk memberi semangat jika ada generasi muda yang sedang belajar dan kebetulan ada beberapa hal/bahasan yang kemudian sulit/menyulitkan. Kalau memang diperlukan, kita masih selalu bisa belajar dari (pengalaman dan pemahaman) orang lain. Melalui Internet, kapan pun dan di mana pun orang-orang yang hidup di zaman sekarang lebih berpeluang untuk mendapatkan informasi dibanding mereka yang hidup seribu tahun lalu. Cara mencari informasi ini serupa dengan metode triangulasi yang dipakai untuk menentukan posisi. Bahkan kalaupun ternyata tetap sulit untuk dipahami, hikmah baiknya adalah kita tidak mudah untuk merasa sudah pintar dan menjadi enggan untuk terus belajar. Sebagai contoh yang bagus, anda bisa membaca artikel berikut ini atau jika ingin membaca versi yang lebih panjang ada di sini. Jangan lupa juga membaca bagian komentarnya (di masing-masing halaman tautan), ini ‘sangat disarankan’. Penulis artikel itu ‘bukanlah orang sembarangan’, beliau adalah salah seorang perintis di bidang elektronika daya (power electronics) yang karyanya menjadi salah satu bahan kajian di banyak textbook hingga saat ini. Beliau adalah seorang pensiunan profesor di Caltech dan masih aktif di bidangnya melalui TESLAco. Mereka yang menanggapi di bagian komentar pun ‘bukan orang sembarangan’ juga. Mereka juga ada yang merupakan akademisi, profesor, practicing engineer, dan penulis buku di bidang ini. Mereka juga pakar di bidang yang sama, sebagian nama bahkan mungkin anda kenal. Mereka bersilang pendapat mengenai definisi dan penerapannya di salah satu cabang bahasan mengenai transformer dan coupled inductors. Bandingkan juga dengan beberapa kutipan berikut ini:

A flyback transformer is a coupled inductor with a gapped core. During each cycle, when the input voltage is applied to the primary winding, energy is stored in the gap of the core. It is then transferred to the secondary winding to provide energy to the load. Flyback transformers are used to provide voltage transformation and circuit isolation in flyback converters.A Guide to Flyback Transformers
In its operation the arrangement of the two inductors is more correctly called a ‘magnetically-coupled inductor’. But because of the two separate windings, it is commonly referred to by designers as a ‘flyback transformer’. Strictly this is a misnomer, but for convenience this article will refer to it this way.Flyback transformer design: practical guidance on minimising losses
Transformers are a key component in many switching regulator designs, providing an isolation barrier in dangerous high power systems, allowing very high step-down or step-up ratios in high voltage designs and (with an extra winding) easily accommodating multiple or inverting outputs. Flyback, forward and SEPIC converters all make use of transformers. This article tells you what you need to know to add transformers to LTspice/SwitcherCAD III simulations.Using Transformers in LTspice/Switcher CAD III

Fenomena silang pendapat seperti ini bagi saya dapat membantu menjaga kewaspadaan (dan ‘kewarasan’), mengenai siapa saya dan batas kemampuan saya. Dari setiap yang kita ketahui, selalu masih sangat banyak yang tidak kita ketahui. Juga ada beberapa pendapat yang berbeda mengenai satu hal yang sama (beserta ketepatan berdasarkan kedalaman penggunaan). Dengan begitu saya terdorong untuk sedapat mungkin tidak berhenti belajar, selagi masih mampu. Hal yang sama juga disarankan kepada mahasiswa, orang-orang muda pewaris Bumi di masa depan. Teruslah belajar. Sebagai penutup bagian/blok ini bagi mahasiswa, orang-orang muda yang masih bersemangat untuk belajar, seperti yang disampaikan di awal bahasan tentang transformer ini memang sering sangat rumit. Terutama kalau pembahasan sudah semakin dalam (seperti layaknya semua hal lain dalam kehidupan) dan semakin banyak unsur ketidakidealan yang disertakan. Anda mungkin bahkan akan menemukan kata-kata black art untuk menggambarkannya.

In the design engineering community, transformer design and prototyping is generally regarded as a black art. To the uninitiated, the wide range of parameters affecting transformer performance – from selection of core material and size to the arrangement of the windings around the core – can appear confusing. In fact, the process of transformer design can be worked through in an orderly way by applying a small number of important equations, combined with a certain degree of trial and error, perhaps better described as ‘experienced guesswork’. Flyback transformer design: practical guidance on minimising losses
With rare exception, schools of engineering provide very little instruction in practical magnetics relevant to switching power supply applications. As a result, magnetic component design is usually delegated to a self-taught expert in this “black art“. Thereare many aspects in the design of practical, manufacturable, low cost magnetic devices that unquestionably benefit from years of experience in this field. However, the magnetics expert is unlikely to be sufficiently aware of the SMPS circuit problems caused by the various parasitic elements and the impact of the specific circuit locations of these elements. This often results in poor decisions in the magnetic component design. Magnetics Design for Switching Power Supplies
If many electronics engineers regard magnetics design as a black art, then it is also true that many transformer engineers regard pulse transformer design in the same way. Magnetic Components: Design and Applications
Despite the apparent simplicity of the block diagram shown, the reality is that there is nothing even remotely trivial about this technique. You can simplify the final design by not using active PFC, but there are still many serious challenges to overcome. The design of a switchmode transformer is almost a ‘black art‘, and achieving full isolation that complies with relevant safety standards is a feat unto itself. Ultimately, while it’s certainly likely to provide the highest efficiency of all the methods discussed, the circuit complexity (and the danger of working with live mains powered circuitry) means that it’s very hard to recommend as a DIY project. Power Supply Pre-Regulator Techniques
Since the seventies, switchmode power supply design has developed from a somewhat neglected “black art” to a precise engineering science. The rapid advances in electronic component miniaturization and space exploration have led to an ever-increasing need for small, efficient, power processing equipment. In recent years this need has caught and focused the attention of some of the world’s most competent electronic engineers. As a result of intensive research and development, there have been many new innovations with a bewildering array of topologies. Fundamentals of Switching Power Supplies

Kutipan di atas hanyalah sebagian kecil contoh saja, beberapa sumber mungkin menggunakan kata-kata yang berbeda tetapi sebenarnya menyampaikan maksud yang sama. Ini justru tidak dalam rangka mematahkan semangat tetapi ajakan untuk proporsional, ini memang bukan bidang yang teramat mudah untuk didalami.  Bahasan tentang flyback converter topology  akan dilanjutkan ke artikel berikutnya. Untuk seri artikel mata kuliah Elektronika Daya II, bisa dilihat di halaman ini. [[1]]D. W. Hart, Power electronics, 1st ed. New York: McGraw-Hill Higher Education, 2010.[[1]] [[2]]The Flyback Converter, Lecture notes, ECEN4517.[[2]] [[3]]P. C. Sen, Principles of electric machines and power electronics, 3rd ed. United States: Wiley, John & Sons, 2013.[[3]] [[4]]B. Choi, Pulsewidth modulated DC-to-DC power conversion: Circuits, dynamics, and control designs. United States: John Wiley & Sons, 2013.[[4]] [[5]]D. W. Hart, Power electronics, 1st ed. New York: McGraw-Hill Higher Education, 2010.[[5]]

font cache: Ψ α β π θ μ Φ φ ω Ω ° ~ ± ≈ ≠ ≡ ≤ ≥ ∞ ∫ • ∆

*Pengaturan footnote tidak dapat sepenuhnya sesuai dengan format pengutipan IEEE.

Pencarian induktor dengan REDEXPERT

[ [ images & links ] ]
[su_panel border=”3px solid #e6e600″ radius=”10″]

Benjamin Disraeli - Change is inevitable. Change is...

Telah sering dikatakan bahwa satu-satunya yang tetap di dunia ini adalah perubahan. Beberapa artefak teknologi di sekitar kita selalu mengingatkan tentang hal itu. Sebagian dari anda mungkin pernah melihat bentuk telepon yang seperti di Gambar 1. Ini adalah telepon bentuk lama yang masih mempergunakan sambungan kabel. Dalam rentang sejarah bentuk telepon, jenis ini bahkan belum terhitung golongan yang paling kuno, masih ada beberapa lagi yang lebih lama dari ini. Meskipun begitu bahkan di Indonesia, kemungkinan besar telepon ini sudah sangat sulit ditemui kecuali replika modernnya.

What Happens When You Get A New Home Phone | Enabling Healthy ...Gambar 1. Landline telephone

Hal yang sama juga berlaku di sistem elektronika lainnya, termasuk tata cara/metode dan sarana pengembangannya. Saya ingat sekali bahwa dahulu saya sudah sangat senang untuk bisa melakukan simulasi rangkaian di EWB (Electronics Workbench), yang kemudian menjadi MultiSIM, yang terakhir lalu berubah menjadi NI Multisim. Selain itu simulasi rangkaian dicoba di MicroSim PSpice, sebelum menjadi OrCAD lalu sekarang menjadi OrCAD Cadence. Perancangan jalur PCB dilakukan terpisah di PROTEL yang di belakang hari menjadi Altium Designer. Tentu saja tidak ada satu pun dari semua software itu yang saya bisa pergunakan secara online.

Tentu saja perubahan zaman juga membawa perubahan tentang bagaimana cara manusia menjalani kehidupan, termasuk dalam pekerjaan. Bisnis dalam pengertian aktivitas komersial ada untuk menyelesaikan permasalahan orang/entitas lain. Karena itu unit-unit bisnis selalu mencari cara mencari keuntungan dengan memberikan kemudahan bagi pengguna/pelanggan. Termasuk dalam hal perangkat lunak untuk perancangan rangkaian/sistem elektronika. Dengan semakin murahnya layanan cloud computing, beberapa perusahaan sudah mulai mengembangkan layanan online. Sebagian membangun yang baru, sebagian mengembangkan dari perangkat lunak offline menjadi online. Cara kita bekerja telah berubah.

[/su_panel] [su_panel border=”3px solid #39e600″ radius=”10″]

Sebagaimana alamiahnya, perusahaan-perusahaan berupaya menambah keuntungan dengan cara meningkatkan volume penjualan, yang didapat antara lain dengan menambah jumlah pembeli. Untuk menarik semakin banyak pembeli, perusahaan-perusahaan itu meningkatkan dan menambah layanan untuk mempermudah calon pembeli dan pelanggan.

Salah satunya adalah perusahaan-perusahaan yang bergerak di bidang produksi dan penjualan komponen elektronika. Sudah cukup banyak dari mereka yang memberikan layanan online berupa selector, kalkulator, dan bahkan simulator. Fasilitas ini umumnya bisa dimanfaatkan oleh siapa saja, beberapa hanya perlu registrasi sederhana yang gratis.

Bagi pelajar (termasuk mahasiswa) ada beberpa hal yang membuat layanan seperti ini baik untuk dicoba dan dimanfaatkan. Pertama untuk memperluas wawasan. Ini penting untuk persiapan kemungkinan memasuki lapangan kerja yang memanfaatkan layanan online serupa. Kemudian untuk dapat mengapresiasi kemajuan zaman dan mengantisipasi pengaruh/dampaknya bagi kehidupan. Mereka yang memiliki wawasan dari pengalaman atau pengetahuan akan berbeda cara pikir dan cara pandangnya dengan mereka yang tidak memiliki wawasan di bidang ini. Kedua, yang lebih dalam, adalah untuk membantu proses belajar itu sendiri. Pelajar di era infomasi, terlebih lagi di era revolusi industri 4.0 dan seterusnya, belajar untuk tantangan yang berbeda dari mereka yang belajar puluhan tahun atau bahkan ribuan tahun yang lalu.

[ Semua gambar di bawah ini dapat dilihat versi tampilan yang lebih besar dengan cara melakukan klik-kanan di gambar lalu memilih “Open image in new tab” pada browser. ]

[/su_panel] [su_panel border=”3px solid #ff3300″ radius=”10″]

Salah satu layanan online yang bisa dicoba sebagai contoh adalah layanan dari Würth Elektronik. Layanan yang dimaksud adalah REDEXPERT. Layanan ini adalah contoh layanan yang memungkinkan pengguna untuk lebih mudah memilih produk-produk induktor yang diproduksi oleh Würth Elektronik yang sesuai. Caranya adalah dengan memberikan fasilitas bagi pengguna untuk melakukan desain sederhana secara online (daring).

Gambar 2. Tampilan awal REDEXPERT.

Gambar 2 adalah screenshot tampilan awal saat masuk ke situs REDEXPERT. Dari beberapa pilihan desain yang bisa dipilih, saya masuk ke Power Stage Design Tool, sesuai keperluan. Berikutnya saya memilih Inductor for Boost Converter. Sebagaimana untuk buck converter, semua topologi yang dipakai adalah topologi dasar yang paling sederhana. Karena itu selalu dipilih yang non-synchonous, termasuk pilihan seperti terlihat di Gambar 3.

Gambar 3. Pilihan desain konverter daya.

Gambar 4. Menu boost converter.

Setelah memilih salah satu konverter seperti di Gambar 3, biasanya kita akan langsung masuk ke tampilan seperti di Gambar 4. Pengguna bisa memilih topologi konverter lain dengan cara melakukan klik pada bagian yang diberi tanda panah di Gambar 4. Maka, pengguna akan diberikan menu pilihan di kolom kiri seperti di Gambar 5.

Gambar 5. Menu pilihan konverter.

[/su_panel] [su_panel border=”3px solid #ff1ab3″ radius=”10″]

Setelah melihat gambaran umum sistem, sekarang kita coba untuk melakukan desain dengan menggunakan contoh dari perhitungan yang telah dilakukan di artikel sebelumnya.

Gambar 6. Pilihan video tutorial

Untuk mulai belajar menggunakan RESEXPERT dengan lebih detail, ada sejumlah video tutorial di Youtube yang telah disediakan. Pilihah HOW TO seperti di Gambar 6, maka nanti akan ada tampilan seperti di Gambar 7. Video ini bisa dimainkan langsung atau di buka melalui situs Youtube.

Gambar 7. Embedded video player.

Gambar 8. Contoh rancangan boost converter.

Di Gambar 8, di kolom paling kiri yang telah diberi tambahan kotak berwarna merah terdapat tempat isian untuk parameter operasi boost converter. Setelah diisi lengkap pengguna bisa menekan Reapply di bagian atas kolom (jika tampil), lalu menekan Display details di bagian bawah kolom yang sama. Untuk sementara abaikan dahulu tampilan di sebelah kanan kolom di Gambar 8. 

Gambar 9. Hasil simulasi rangkaian oleh REDEXPERT.

Untuk dapat memberikan saran, REDEXPERT terlebih dahulu melakukan perhitungan unjuk kerja rangkaian. Hasilnya seperti terlihat di Gambar 9. Di bagian DETAILS terdapat data yang independen terhadap apa pun nanti pilihan induktornya. Contoh masukan parameter rangkaian diambil dari artikel sebelumnya. Sebagai hasilnya menurut versi REDEXPERT nilai induktor yang disarankan sebesar Lopt = 203 μH. Arus induktor yang sama dengan arus masukan boost converter juga dihitung seperti di Gambar 9.

Gambar 10. Pemilihan induktor untuk pembandingan.

Perhatikan dua tanda panah merah. Di REDEXPERT kita bisa memilih beberapa induktor untuk diperbandingkan satu sama lain. Di panah yang paling atas pengguna dapat memilih induktor yang diinginkan dengan memberi tanda centang (klik). Secara otomatis nama pengenal induktor itu akan muncul di tempat di panah merah yang di bagian bawah. Terlihat di Gambar 10 bahwa total telah ada empat induktor yang dipilih.

Di kolom Spec di Gambar 10, pengguna bisa memilih untuk melihat satu (atau lebih secara bergantian) datasheet untuk masing-masing komponen induktor. Hasilnya akan tampak seperti di Gambar 11.

Gambar 11. Tampilan datasheet.

Gambar 12. Filter dan simulasi pengguaan induktor.

Di Gambar 12, di penanda 1 terlihat bahwa pengguna bisa mengaktifkan filter atau menonaktifkan filter. Misalnya jika filter rentang batas nilai induktasi diaktifkan, maka hanya yang masuk dalam rentang itu yang akan ditampilkan. Itu pun biasanya dibatasi maksimal sekitar 100 komponen. Bahkan jika induktor telah disimpan seperti di penanda 2, komponen itu tidak akan bisa aktif untuk dibandingkan jika ada salah satu filter yang membuatnya tidak masuk dalam bagian komponen terpilih. Di tiap parameter di tiap filter  di sekitar penanda 1 terdapat tanda ‘x’ yang bisa digunakan untuk mematikan filter.

Sebagai contoh untuk penenda 2 di Gambar 12, sengaja saya pilih induktor yang nilainya sangat kecil jauh di bawah nilai yang direkomendasikan. Untuk dapat memilihnya dalam perbandingan, filter batas nilai induktasi yang secara otomatis diatur saat pertama melakukan perubahan parameter perlu dinonaktifkan. Masih di gambar yang sama, di penanda 3 bisa dilihat ada tiga kurva di dua jendela. Tegangan di jendela atas, arus rata-rata dan riak arus di jendela bawah. Penanda 4 menunjukkan Reapply yang bisa ditekan untuk mengaktifkan kembali filter-filter yang telah dihilangkan sebelumnya di posisi penanda 1, berdasarkan nilai-nilai parameter rangkaian yang dimasukkan.

Gambar 13. Kurva

Di Gambar 13, posisi penanda 1 di kolom sebelah kiri menunjukkan posisi tiga kurva disipasi daya dari induktor yang sedang dipilih. Penanda 2 menunjukkan bahwa pengguna bisa melihat detail daya dengan menunjuk ke titik tertentu sepanjang kurva. Penanda 3 menunjukkan bahwa untuk masing-masing grafik besar di sebelah kanan, pengguna bisa mengaktifkan satu kolom tambahan di tabel yang memberikan isi berupa nilai tepat pada posisi garis kursor bersinggungan dengan kurva. Sebagai contoh di Gambar 13, nilai induktansi di induktor pada suhu 40 saat arus yang melintas sebesar 350 mA.

[/su_panel] [su_panel border=”3px solid #39DECB” radius=”10″] [intense_tabs direction=”right” active_tab_background_color=”#000000″ active_tab_font_color=”#ffff00″ trigger=”click”] [intense_tab title=”Video01″ border=”3px solid #e8e8e8″ link_target=”_self” content_background_color=”#000000″ content_font_color=”#ffffff” icon_size=”1″ icon_position=”left”]

[/intense_tab] [intense_tab title=”Video02″ border=”3px solid #e8e8e8″ link_target=”_self” icon_size=”1″ content_background_color=”#000000″ content_font_color=”#ffffff” icon_position=”left”]

[/intense_tab] [intense_tab title=”Video03″ border=”3px solid #e8e8e8″ link_target=”_self” icon_size=”1″ content_background_color=”#000000″ content_font_color=”#ffffff” icon_position=”left”]

[/intense_tab] [/intense_tabs] [/su_panel]

 

font cache: Ψ α β π θ μ Φ φ ω Ω ° ~ ± ≈ ≠ ≡ ≤ ≥ ∞ ∫ • ∆

Simulator rangkaian dan model LED

[ [ simulator & model LED ] ]

 

Ada dua jalan bagian untuk mempelajari tentang dasar LED driver, yang merupakan peran elektronika daya di pengembangan pemanfaatan teknologi LED. Bagian pertama adalah mempelajari tentang LED, termasuk penggunaan model SPICE-nya. Bagian kedua adalah tentang catu daya. Catu daya linier maupun catu daya tersakelar dapat dipergunakan untuk mensuplai daya ke LED, bergantung pada peruntukannya.

Catu daya linier dengan komponen regulator LM317 dapat diatur untuk bekerja dalam mode constant current. Meskipun begitu di aplikasi yang lebih umum, saat LED menjadi sumber penerangan maka catu daya tersakelar (SMPS; switch mode power supply) menjadi pilihan yang lebih umum karena lebih efisien, lebih ringkas, dan bahkan lebih murah.  Mengingat untuk sumber penerangan LED memerlukan rating daya yang lebih besar daripada penggunaannya sebagai indikator. Selain itu sumber penerangan dengan inti utama LED sering harus bekerja dengan dihubungkan ke jala-jala utilitas (seperti PLN) yang bertegangan di atas 90  V (nominal PLN 230 Vrms) dan merupakan tegangan AC.

Prinsip kerja topologi dasar SMPS telah dipelajari sebelumnya. Umumnya terdiri dari buck, boost, buck-boost (inverting/classical), non-inverting buck-boost (cascade & SEPIC), juga flyback. Dengan pemahaman fiosofi kerja rangkaian open-loop topologi dasar, diharapkan saat mengenal lebih jauh solusi SMPS yang ditawarkan secara komersial, akan menjadi lebih mudah. Telah banyak solusi off-the-shelf yang ditawarkan produsen elektronika, baik berupa komponen maupun di level sistem. Ada banyak IC regulator/controller yang memungkinkan pengguna membuat suatu closed loop SMPS dengan lebih mudah. Ditunjang dengan pemahaman topologi dasar tadi, maka proses membaca panduan/datasheet dari IC tersebut diharapkan dapat lebih mudah dilakukan. Setelah bagian ini pun dipahami baru berikutnya memasuki tahapan bagaimana memberi daya yang sesuai untuk tipe-tipe LED tertentu.

Artikel ini masih akan melanjutkan artikel sebelumnya tentang simulasi dengan model LED. Kali ini saya akan lanjut menuliskannya dari sudut pandang simulator. Ada beberapa simulator yang akan dicoba untuk melihat bagaimana simulasi dilakukan. Mengingat masing-masing simulator memiliki perbedaan pengaturan, bahkan perbadaan itu juga ada untuk simulator yang sama tetapi berbeda versi lisensi. Ini juga diperlukan agar mahasiswa mengenal tipe masing-masing ‘senjata’ dengan lebih baik. Kapan menggunakan simulator tertentu dan kapan menggunakan yang lain.

[ Semua gambar di bawah ini dapat dilihat versi tampilan yang lebih besar dengan cara melakukan klik-kanan di gambar lalu memilih “Open image in new tab” pada browser. ]

 

PSIM

Gambar 1. Simulasi LED di PSIM.

Sepanjang yang saya ketahui, di PSIM student version simulasi LED hanya sebatas pada mode ideal saja. Simulator PSIM (setidanya versi ini) unggul dalam melakukan simulasi di level sistem, mudah dipergunakan, dan relatif mempercepat pembangunan dengan penggunaan blok sistem. Karena itu simulator ini banyak dipergunakan di elektronika daya (power electronics). Rilis terakhir memungkinkan kombinasi dengan standar SPICE, tetapi fasilitas ini hanya diberikan untuk versi profesional saja.

 

MULTISIM (LIVE)

Ada dua versi Multisim dari segi akses medianya, yang offline dan yang online (Multisim Live). Untuk yang online terdapat versi yang bisa dipergunakan secara gratis. Pengguna juga dapat melakukan upgrade ke versi online profesional yang dijual satu paket dengan lisensi produk offline. Simulator ini memudahkan pengguna yang perlu melakukan simulasi dasar. Syaratnya hanya komputer yang memiliki browser, koneksi Internet, dan akun yang dibuat dengan gratis.  Simulasi yang dibuat akan ditempatkan di dalam mode publik.

Bisa dilihat di Gambar 2, simulator versi gratis ini terbatas dalam hal model komponen, termasuk model LED. File simulasi LED ini telah tersedia, karena telah dibuat oleh orang lain di Multisim Live. Anda bisa segera mencobanya tanpa perlu membuat rangkaian sendiri. Disediakan tempat untuk memasukkan parameter model LED di kolom bagian kanan, jika anda cukup bersabar untuk melakukannya. 

Gambar 2. Simulasi dengan Multisim Live.

 

PartSim

Sama halnya dengan Multisim Live, PartSim adalah juga simulator online. Kita tidak perlu melakukan intalasi apa pun di komputer kita, cukup hanya dengan menggunakan browser saja. Sejak awal, PartSim memang sengaja dibuat bebas pakai alias gratis. Ada kemungkinan mereka bekerjasama dengan perusahaan distribusi komponen seperti Arrow sebagai mitra bisnis. Terdapat peluang penjualan komponen ke pengguna yang mempergunakan PartSim untuk membuat simulasi atau skema rangkaian.

Karena dibangun dengan tujuan yang berbeda dengan Multisim Live, filosofi yang menjadi dasar berbeda, maka cara operasionalnya pun menjadi berbeda. PartSim tampaknya tidak memiliki sumber daya yang cukup untuk membangun simulator online secara utuh dari awal. Mereka memililh mempergunakan mesin ngspice. Tetapi di sisi lain karena memang tampaknya dari awal layanan tidak ditujukan untuk dijual langsung ke pengguna akhir, beberapa fasilitas dibuka bagi pengguna yang hendak memanfaatkannya secara penuh. Tidak ada fasilitas yang ditutup demi agar versi komersial software terjual. Meskipun tampilannya memang masih jauh lebih sederhana daripada simulator yang pada dasarnya adalah simulator komersial professional seperti Multisim.

Gambar 3. Tampilan skema rangkaian di PartSim.

Di PartSim pengguna bisa menambahakan sendiri model komponen berbasis SPICE. Meskipun cara ini tidak sangat praktis tetapi cukup membantu dan mempermudah. Mengingat PartSim adalah simulator yang secara legal gratis bebas pakai dan juga tidak perlu diinstalasi karena berbasis online. Sebagai contoh cepat saya pergunakan kembali model SPICE komponen LED XHP70 produksi Cree yang telah diperoleh sebelumnya.

Gambar 4. Jendela Spice Model.

Jika seperti di Gambar 3 kita melakukan klik di tombol Spice Model di bagian kanan di kolom Part Properties, maka akan terbuka jendela seperti di Gambar 4. Di situ terlihat model komponen yang baru saja saya tambahkan, yaitu XHP70. Pengguna bisa melihat detail model komponen dengan melakukan klik di tombol Show Model Text. Jika melakukan klik di New Model, akan terbuka jendela Create New Model. Di jendela itu anda bisa melakukan copy-paste model SPICE. Setelah selesai (entah memilih cancle atau create) maka akan muncul tampilan jendela seperti Gambar 5 berikut ini.

Gambar 5. PartSim Spice Model Manager.

Gambar 6. Hasil simulasi V1 vs. IR1 XHP70 di PartSim.

Gambar 7. Hasil simulasi karakteristik hubungan Vdiode dan Idiode.

Untuk kepentingan simulasi model komponen LED, PartSim tampaknya lebih memberikan kemudahan yang fungsional bila dibandingkan dengan Multisim Live.

 

EveryCircuit

EveryCircuit adalah simulator yang dipasarkan untuk sistem Android dan iPhone, tetapi juga dapat dipergunakan untuk sistem komputer dengan browser Chrome/Chromium. Berbeda dengan dua simulator sebelumnya, simulator ini berbayar, pengguna bisa menggunakan versi online via browser setelah login ke akunnya. Keunggulan simulator ini adalah tampilannya yang menarik dan dapat dioperasikan di smartphone. Kekurangannya adalah bahwa simulator ini tidak ditujukan untuk pemakaian detail seperti Cadence Orcad, Multisim, atau bahkan LTspice. Seperti terlihat di animasi di Gambar 8, terdapat empat parameter model LED yang dapat diubah secara langsung saat simulasi.

Gambar 8. Simulasi V-I LED dengan EveryCircuit.

 

Micro-Cap 12

Gambar 9. D-LED di Micro-Cap 12.

Di Micro-Cap 12 jika anda menggunakan kata kunci LED untuk pencarian maka anda akan menemukan hasilnya seperti di Gambar 9. Hanya ada tiga model LED yang tampak bisa dipergunakan. Tetapi di Micro-Cap sebenarnya ada beberapa model komponen LED yang sudah disediakan. Meskipun keadanaannya hampir sama dengan di LTspice, sebagian model adalah untuk komponen yang sudah obsolete, sudah dinyatakan tidak lagi diproduksi oleh produsen aslinya. Sebagai contoh bisa dilihat di Gambar 10 berikut ini.

Gambar 10. Contoh model komponen LED yang telah disediakan di dalam Micro-Cap 12.  

Gambar 11. Model SPICE dari komponen XHP70 yang ditambahkan ke Micro-Cap12. 

Gambar 12. Simulasi karakteristik V-I di XHP70.

Gambar 12 adalah hasil simulasi untuk mendapatkan karakteristik hubungan antara tegangan anode-katode dan arus diode. Sama seperti LTspice, pengguna dapat memilih variabel yang akan dipakai di sumbu horizontal Micro-Cap 12. Pada percobaan ini simulasi yang dilakukan adalah dalam mode transient. Sumber tegangan AC di berikan ke resistor-diode yang terhubung seri. Perhatikan bahwa jika simulator memungkinkan, kita tidak selalu harus melakukan percobaan serupa ini dalam mode dc sweep.

 

Model LED :: Lumileds LUXEON F

Sebelum melanjutkan paparan kegiatan simulasi, saya akan beralih sementara untuk menyampaikan contoh model LED yang lain selain XHP70 dari Cree. Salah satu perusahaan yang terkemuka adalah Lumiled (yang dulu pernah dimiliki oleh Philips). Nama perusahaan ini lebih terkenal dariada Bridgelux, Epistar, atau Epileds. Terutama dengan produk seri Luxeon yang pernah menjadi brand yang sangat terkenal untuk teknologi LED.

Jika XHP70 memiliki daya maksimum sebesar 29 Watt, maka saya mencari contoh tipe LED dengan daya yang lebih rendah tetapi masih aktif diproduksi oleh produsen awalnya. Sebenarnya perusahaan Cree memiliki variasi produk yang cukup baik dan banyak yang dilengkapi dengan model komponen berformasi SPICE. Tetapi kali ini saya sekadar sengaja untuk mencari alternatif, dari perusahaan yang lain.

Di website produsennya, disampaikan bahwa LUXEON F adalah seri LED yang dibuat untuk target pasar industri otomotif.  Sebagaimana perusahaan Cree, di situs seri produk LUXEON F dari Lumileds anda bisa menemui banyak dokumen yang berisikan keterangan tambahan dan juga design resource yang berisi file model SPICE

Dari seri LUXEON F, saya ambil dua sub-seri sebagai contoh yaitu LUXEON F Cool White (product brief dan datasheet) dan LUXEON F ES Cool White (product brief dan datasheet). Dari keempat dokumen itu dapat disimpulkan bahwa kedua sub-seri LED itu hampir serupa, tetapi ada beberapa keterangan yang dapat menunjukkan perbedaan keduanya. 

Gambar 13. Perbandingan antara dua varian LED. 

Gambar 13 adalah salah satu contoh upaya untuk membandingkan antara satu produk dengan produk lain. Dengan cara ini diharapkan satu atau lebih perbedaan parameter akan lebih mudah terdeteksi. Di Internet, beberapa situs telah mempermudah pembandingan dengan mengizinkan pengguna melakukan pencarian dan perbandingan langsung berdasar pada parameter (parametric search).

Berikut ini bisa dilihat isi dua file dari ekstraksi dua file zip hasil download yang berbeda untuk dua sub-seri yang berbeda. Masing masing juga terbagi lagi ke beberapa komponen diskrit sesuai pengaturan berdasarkan parameter optiknya.

SPICE_Model_LUXEON_F_CoolWhite_(LFXH-C1A)_20141119.txt [Pastebin link]

SPICE_Model_LUXEON_F_ES_CoolWhite_(LFXH-C2B)_20141216.txt [Pastebin link]

 

Simulasi model LUXEON F

Model Luxeon F yang terdapat di blok di atas dapat disimulasikan di beberapa simulator berbasis SPICE. Kali ini saya akan terlebih dahulu mempergunakan Micro-Cap, baru kemudian disusul LTspice, dan PartSim.

Untuk melakukan simulasi perlu dipilih model varian yang akan dipakai untuk simulasi. Dua model yang akan dipakai adalah:

LUXEON F Cool White (LFXH-C1A): 50mA to 700mA

.model LFXH-C1A_VFBIN_C_min D(IS=4.562E-21 N=2.426E+00 RS=1.875E-01 XTI=-7.000E+00 EG=3.511E+00 TRS1=-1.028E-02 TRS2=5.287E-05 TNOM=25 mfg=Lumileds Type=LED)

LUXEON F ES Cool White (LFXH-C2B):   50mA to 1000mA

.model LFXH-C2B_VFBIN_C_min D(IS=7.948E-28 N=1.758E+00 RS=1.382E-01 XTI=-6.999E+00 EG=3.433E+00 TRS1=-3.313E-03 TRS2=2.130E-18 TNOM=25 mfg=Lumileds Type=LED)

Gambar 14. Model LED yang sudah dimasukkan pustaka.

Gambar 15. Rangkaian uji coba model LED.

Gambar 16. Hasil uji coba V vs. I,  model LFXH-C1A_VFBIN_C_min di Micro-Cap.

Gambar 17. Kutipan dari datasheet.

Gambar 18. Hasil uji coba V vs. I,  model LFXH-C1A_VFBIN_C_min di LTspice.

Gambar 19. Simulasi tegangan dan arus yang menghasilkan daya 1 W.

Gambar 20. Perbedaan V & I yang menghasilkan 1 W dan 2 W di LED.

Gambar 21. Laporan simulasi LFXH-C1A_VFBIN_C_min di PartSim.

Gambar 22. Kurva V vs. I LED dengan titik kursor di ~1 Watt.

Gambar 23. Kutipan dari datasheet.

Gambar 24. Hasil uji coba V vs. I,  model LFXH-C2B_VFBIN_C_min di LTspice.

Gambar 25. Simulasi LFXH-C2B_VFBIN_C_min, 1 A dan 700 mA, di Micro-Cap. 

Gambar 26. Simulasi LFXH-C2B_VFBIN_C_min, tegangan anode-katode sebesar 2.9 V, di PartSim. 

 

SIMetrix/SIMPLIS

Gambar 27. Hasil uji coba V vs. I,  model LFXH-C1A_VFBIN_C_min di SIMetrix.

Gambar 28. Hasil uji coba V vs. I,  model LFXH-C2B_VFBIN_C_min di SIMetrix.

 

 

Praktik dimmer digital satu fase

[su_panel border=”3px solid #91c51e” radius=”10″]

Praktikum Triac satu fase mempergunakan sistem praktik yang berbeda dari sistem ElettronicaVeneta. Sistem Triac adalah sistem yang dibangun sendiri oleh beberapa mahasiswa terdahulu yang belajar di laboratorium elektronika daya. Sistem penyakelaran dengan Triac ini disimpan di dalam kotak mika bening seperti pada gambar berikut.

Gambar 1.

[/su_panel] [su_panel border=”3px solid #dd5894″ radius=”10″]

Untuk melatih HOTS, maka perlu dilakukan kegiatan yang mendekati pola PBL (project based learning) atau PBL (problem based learning). Meskipun tidak persis mengikuti keduanya, namun kegiatan praktik ini mengadopsi beberapa unsur dari kedua kerangka belajar itu agar dapat lebih mendekati harapan bahwa perguruan tinggi vokasi memiliki keunggulan dalam hal melatih mahasiswa berpikir, bila dibandingkan dengan tingkat SMK. Upaya ini tentu dengan tetap memperhatikan ‘kenyataan lapangan’ tentang titik awal mula para praktikan.

Berbeda dengan beberapa praktik lainnya, dalam praktik ini para praktikan diajak berpikir dan mulai melihat pola pertanyaan yang penting diajukan untuk dapat memperoleh pemahaman secara mandiri berdasarkan ilmu pengatahuan yang (bahkan sudah) baku. Justru dengan praktik yang sederhana ini diharapkan mahasiswa praktikan di level perguruan tinggi vokasi mampu mengembangan kemandirian berpikir mekipun masih dengan panduan dan pembatasan lingkup.

Beberapa pertanyaan yang bisa diajukan misalnya:

  1. Apakah perbedaan antara firing angle dengan conduction angle?
  2. Apakah ada hubungan antara pengaturan waktu tunda pemicuan/sudut pemicuan (firing angle) dengan bentuk signal yang tampak di oscilloscope?
  3. Apakah ada pengaruh nyata dari besar sudut pemicuan terhadap luas wilayah di bawah kurva di oscilloscope?
  4. Apakah nilai tegangan dari jala-jala PLN berpengaruh terhadap luas wilayah di bawah kurva yang ditampilkan di oscilloscope?
  5. Apakah ada hubungan antara tegangan listrik dari PLN dengan nilai yang terukur di DMM (digital multimeter)?
  6. Apakah perubahan sudut pemicuan menyebabkan perubahan nilai tegangan r.m.s. yang diukur pada beban?
  7. Apakah perubahan nilai firing angle menyebabkan perubahan derajat terang cahaya pada beban berupa lampu pijar?
  8. Apakah ada hubungan antara waktu penundaan pemicuan dengan hasil pengukuran pada lux meter?
  9. Apakah hasil pengukuran lux meter sama persis dengan hasil pengukuran pada aplikasi Science Journal?
  10. Jika terdapat perbedaan antara lux meter dengan Science Journal, apakah selisihnya tetap? Apakah perbandingannya tetap?
  11. …dan seterusnya…

Selain anda dapat menyusun sendiri pertanyaan-pertanyaan seperti pada contoh di atas, anda bisa juga menyusun pertanyaan-pertanyaan yang walaupun terkesan remeh dan ‘konyol’ tetapi bisa membantu pemahaman anda terhadap korelasi dan kausalitas. Hal ini penting karena korelasi dan kausalitas adalah dua hal penting di bidang sains, rekayasa, dan teknologi. Beberapa pertanyaan yang terkesan ‘lucu’ misalnya:

  1. Apakah hari dan bulan pelaksanaan praktikum berpengaruh pada hasil pengujian?
  2. Apakah apa warna pakaian teman di sebelah kanan anda berpengaruh pada nilai pengukuran?
  3. Apakah berdasarkan pengujian berulang kali, memang terbukti bahwa merk laptop yang dipergunakan menentukan hasil pengukuran?
  4. Berdasarkan pengalaman anda, apakah menurut anda jenis makanan yang anda makan tadi pagi akan menentukan besarnya nilai yang ditunjukkan oleh DMM?

 

Selain menyusun pertanyaan untuk memahami sudut pemicuan, besar nilai tegangan listrik,  dan pencahayaan, praktikan berkesempatan untuk menyusun pertanyaan mengenai penggunaan alat ukur multimeter. Bisa diperhatikan apa perbedaan antara DMM TrueRMS dengan DMM yang non TrueRMS, saat melakukan pengukuran nilai tegangan listrik pada beban yang aliran arus listriknya dikendalikan oleh Triac. Di lab, Fluke 179 adalah alat ukur yang merupakan TrueRMS. Sedangkan untuk Sanwa, tipe CD772 memang adalah tipe true rms tetapi tipe CD771 bukan merupakan tipe yang merupakan tipe berkemampuan true rms. Untuk praktik ini, memang sengaja mempergunakan Fluke 179 dan CD771.


 Gambar 2.

Di Gambar 2, posisi awal operasi saat sudut pemicuan maksimal (energi yang ‘disalurkan’ minimal). 


 Gambar 3.

Gambar 3, menunjukkan tampilan intensitas cahaya lampu pada saat posisi sudut pemicuan di pertengahan.

 


Gambar 4.

 Gambar 4 merupakan tampilan saat sudut pemicuan paling kecil. Energi yang diterima lampu adalah yang paling besar.


Gambar 5.

Untuk percobaan Triac, perangkat instrumen oscilloscope perlu dioperasikan pada mode cursor. Silakan di baca di halaman ini.

 

Gambar 6.

 

Gambar 7.

 


Gambar 8.

 

Gambar 9.

 

Gambar 10.

 

[/su_panel] [su_panel border=”3px solid #4ea1ff” radius=”10″]

Gambar 11.

 

Gambar 12.

 

Gambar 13.

 

 

Gambar 14.
 
 
 

 

[/su_panel] [su_panel border=”3px solid #FF6666″ radius=”10″]

 

 

Gambar 15.

 

 

 

Gambar 16.

 


Gambar 17.

 

 

Gambar 18.
 

 

 


Gambar 19.

 

 

 


Gambar 20.

 

 

[/su_panel] [su_panel border=”3px solid #0d6921″ radius=”10″]

 


Gambar 21.

 

 


Gambar 22.

 


Gambar 23.

 

 

[/su_panel] [su_panel border=”3px solid #ffe64e” radius=”10″] [intense_tabs direction=”right” active_tab_background_color=”#000000″ active_tab_font_color=”#ffff00″ trigger=”click”] [intense_tab title=”Video01″ border=”3px solid #e8e8e8″ link_target=”_self” content_background_color=”#000000″ content_font_color=”#ffffff” icon_size=”1″ icon_position=”left”]

[/intense_tab] [/intense_tabs] [/su_panel] [su_panel border=”3px solid #990066″ radius=”10″] [/su_panel]