Di antara topologi dasar konverter yang umum dipelajari, flyback converter memiliki keunikan tersendiri. Pertama, dalam bentuk dasarnya ini adalah konverter yang memiliki galvanic isolation. Output dan input dipisahkan dengan sebuah transformer (mutual inductance). Meskipun menurut beberapa sumber penggunaan istilah transformer untuk komponen mutual inducance di flyback ini sebenarnya ‘bermasalah‘. Namun untuk sementara ini demi penyederhanaan proses belajar, istilah transformer (trafo) masih dapat dipergunakan. Nanti kita akan kembali dengan singkat ke masalah ini di bagian lain.
Gambar 1. Penyederhanaan.
Keunikan kedua adalah bahwa flyback converter tidak hanya dapat diterapkan di sistem dc-dc converter yang bertegangan sangat rendah. Beberapa sistem flyback converter dirancang untuk dapat bekerja di level tegangan yang lebih tinggi, level tegangan jala-jala/utilitas. Hanya diperlukan diode penyearah dan filter/tapis, tidak diperlukan trafo tambahan sebagai penurun tegangan di sisi input suatu sistem flyback converter.
[ Semua gambar di bawah ini dapat dilihat versi tampilan yang lebih besar dengan cara melakukan klik-kanan di gambar lalu memilih “Open image in new tab” pada browser. ]
Sebelum mempelajari tentang cara kerja (theory of opearation/mode of operation) ada baiknya sejenak mengulang tentang dot convention di transformer. Bahan dan tautan yang lebih banyak terdapat di artikel ini.
Gambar 2. Tegangan sisi primer satu fase dengan sisi sekunder.
Gambar 3. Tegangan sisi sekunder berbalik fase dari sisi primer.
Gambar 4. Simulasi dot convention dengan gelombang sinus di LTspice.
Semua transfomer dari Gambar 2 sampai Gambar 4 masih secara electrical terhubung dengan adanya ground node bersama. Ini hanya dipakai sekadar untuk memudahkan penunjukkan polaritas saja, yaitu menggunakan gnd acuan bersama. Dalam praktik ada banyak aplikasi yang benar-benar memisahkan kelistrikan sisi primer dengan sisi sekunder trafo. Cara kerja trafo flyback yang dipergunakan untuk menyimpan sementara dan memindahkan energi tidaklah sama persis dengan transformer (mutual inductance) yang biasa ditemui di sistem penyearah untuk bekerja di jala-jala utilitas (PLN). Di flyback converter, inti ‘transformer’ memang dirancang untuk memiliki kemampuan menyimpan energi (dengan adanya celah udara). Namum demikian prinsip dot convention tetap berlaku dan penting dipahami untuk mengerti cara kerja topologi flyback converter. Selain di artikel sebelumnya, kutipan dari textbook ini juga penting diketahui {{1}}.
Topologi flyback converter sebenarnya dikembangkan dari buck-boost converter topology. Topologi buck converter sangat bermanfaat karena memiliki efisiensi yang tinggi dibanding topologi yang lain, tetapi hanya bisa dipakai untuk menurunkan level tegangan. Topologi boost converter bermanfaat karena mampu menaikkan level tegangan keluaran dari level tegangan masukan. Tetapi konverter ini pun hanya bisa menaikkan, tidak bisa menurunkan tegangan. Karena itu, diperlukan suatu konverter yang mampu melakukan keduanya. Suatu buck-boost converter dibuat untuk bisa melakukan keduanya, sekalipun efisiensinya lebih rendah dari buck converter. Istilah buck-boost converter bisa bermakna luas sebagai rumpun konverter atau bisa juga bermakna sempit yaitu merujuk hanya pada salah satu bagian kelompok saja. Dalam pengertian luas, buck-boost converter terdiri dari sistem yang non-inverting dan sistem inverting. Dalam makna yang sempit, jika disebut buck-boost converter maka sebenarnya yang dimaksud adalah inverting buck-boost atau yang kadang disebut sebagai classical buck-boost converter. Sekalipun lebih versatile karena bisa menaikkan atau menurunkan tegangan, tetapi inverting buck-boost topology memiliki kekurangan. Sebagaimana namanya, polaritas tegangan keluaran akan selalu berkebalikan dari masukannya. Maka dari itu diperlukan perubahan tahap berikutnya, evolusi topologi masih dilanjutkan. Salah satu bentuk non-inverting buck-boost topology adalah rangkaian SEPIC. Evolusi buck-boost topology juga kemudian menjadi flyback topology yang tetap memiliki kemampuan untuk menaikkan dan menurunkan tegangan. Tipe ini berpotensi memiliki isolasi antara input dan output. Meskipun pada beberapa sistem, keberadaan umpan balik untuk pengendalian membuat isolasi ini tidak lagi sempurna.
Gambar 5. Evolusi dari buck-boost ke flyback [sumber].
Gambar 5 menunjukkan perubahan yang digambarkan secara bertahap, dari satu topologi ke topologi lainnya. Untuk bisa memahami mengapa pergeseran posisi diode dari (c) ke (d) di Gambar 5, perlu kembali mengingat tentang dot convention. Keterangan lebih rinci bisa dibaca di sumber gambar{{2}}.
Gambar 6. Model ‘flyback transformer’ dengan magnetizing inductance.
Model transformer di rangkaian di Gambar 5 (d) adalah bentuk rangkaian yang umum untuk menggambarkan sebuah topologi flyback converter. Namun demikian sebenarnya gambar itu tidak tepat karena model ‘transformer’ itu belumlah cukup untuk sebuah ‘flyback transformer’. Di Gambar 6 terlihat ada sebuah induktor lain di sebelah kiri model trafo dengan tulisan LM. Notasi LM atau Lm dipergunakan untuk menandai suatu magnetizing inductance, yang dipakai untuk mewakili kondisi magnetisasi inti (magnetization of the core) {{3}}. Yaitu kondisi yang menggambarkan magnetic flux (Φm) di inti, terutama saan sisi sekunder berada dalam kondisi open circuit. Sebelum melanjutkan bahasan, ada baiknya kita membandingkan beberapa sumber kutipan berbeda mengenai fenomena yang sama (yaitu magnetizing inductance). Selain itu sekaligus juga membandingkan kutipan dari textbook komersial (#fairUse, #educational) dengan kutipan dari sumber yang bebas diakses di Internet.
Kutipan dari ‘Lecture notes ECEN4517’ di atas dapat lebih mudah dipahami jika sambil sesekali melihat Gambar 6. Magnetizing inductance (LM atau Lm) di sistem flyback akan berfungsi sebagai penyimpan energi sementara dari sisi primer sebelum nanti ada saatnya dipindahkan ke sisi sekunder.
Khusus di bagian berikut ini, kutipan berasal dari mata kuliah Green Electronics yang diampu oleh Prof. William Dally dari Standford.Gambar 7. Model transformer [sumber]
Gambar 8. Magnetizing inductance dan air gap [sumber screenshot].
Gambar 9. Peran magnetizing inductance di topologi flyback [sumber].
Gambar 10. Fungsi dasar transformer [sumber]
Gambar 11. Screenshot definisi trafo dan induktor.
Gambar 12. Screenshot, magnetic core.
Gambar 13. Screenshot, core limitations.
Gambar 14. Screenshot, energy storage.
Gambar 15. Magnetics in SMPS [sumber].
Gambar 17. ‘Transformer’ w/energy storage.
Gambar 18. Operasi dari trafo.
Gambar 19. Flyback transformer.
Dari sejumlah pemaparan yang dikutip di atas dapat dimaklumi jika Slobodan Cuk menyetujui pendapat berikut ini:
“Really the ‘flyback transformer’ does not exist, it is a simple inductor where all the energy to be transferred is stored in GAP.”
Juga berpendapat sebagai berikut:
Definition of the COUPLED INDUCTORS is that once the coupling is removed that converter still must operate.
Di awal saya telah menuliskan clue bahwa sesungguhnya transformer yang dipergunakan di topologi flyback tidaklah persis sama dengan yang lebih umum secara awam ditemui untuk bekerja di sistem AC utilitas. Yaitu trafo yang dipakai untuk menaikkan/menurunkan tegangan dan melakukan isolasi. Berikutnya saya sampaikan simulasi trafo dalam bentuk yang paling sederhana sebagai komponen mutual inductance untuk baseline. Lalu dari sana saya cuplik bagaimana penggunaan model flyback transformer yang lebih mendekati kenyataan, di Gambar 5 dan Gambar 6. Di sana bisa dilihat keberadaan LM atau Lm yang di flyback converter akan berperan penting. Untuk memahami magnetizing inductance saya tampilkan kutipan dari beberapa textbook komersial, ini berfungsi sebagai pembanding dan tolok ukur. Saya tampilkan sejumlah kutipan dokumen yang mengandung informasi yang diperlukan. Informasi ini dikutip dan bisa diperbandingkan satu sama lain dan terhadap kutipan dari textbook. Ini adalah contoh bagaimana kita bisa mengkonstruksi suatu pemahaman terhadap suatu hal dari sebaran kepingan informasi dari berbagai sumber. Menentukan batas kedalaman bahasan yang kita perlukan, menimbang mana saja bahan yang dipakai dan mana yang setidaknya untuk sementara belum dipakai. Ini adalah bagian dari membangun dan memperkuat literasi.
Di artikel ini dan beberapa artikel lain, kedalaman bahasan mengenai induktor dan transformator (transformer) akan dibatasi. Bagi yang belum mengenal sama sekali, pokok bahasan teori medan, hal-ihwal mengenai elektromagnetik, EMI/RFI, induktor, dan transformer berikut semua variasi/turunannya adalah bahasan yang pelik. Saya tidak bermaksud menulis di bagian ini untuk menakut-nakuti. Sebaliknya justru untuk memberi semangat jika ada generasi muda yang sedang belajar dan kebetulan ada beberapa hal/bahasan yang kemudian sulit/menyulitkan. Kalau memang diperlukan, kita masih selalu bisa belajar dari (pengalaman dan pemahaman) orang lain. Melalui Internet, kapan pun dan di mana pun orang-orang yang hidup di zaman sekarang lebih berpeluang untuk mendapatkan informasi dibanding mereka yang hidup seribu tahun lalu. Cara mencari informasi ini serupa dengan metode triangulasi yang dipakai untuk menentukan posisi. Bahkan kalaupun ternyata tetap sulit untuk dipahami, hikmah baiknya adalah kita tidak mudah untuk merasa sudah pintar dan menjadi enggan untuk terus belajar. Sebagai contoh yang bagus, anda bisa membaca artikel berikut ini atau jika ingin membaca versi yang lebih panjang ada di sini. Jangan lupa juga membaca bagian komentarnya (di masing-masing halaman tautan), ini ‘sangat disarankan’. Penulis artikel itu ‘bukanlah orang sembarangan’, beliau adalah salah seorang perintis di bidang elektronika daya (power electronics) yang karyanya menjadi salah satu bahan kajian di banyak textbook hingga saat ini. Beliau adalah seorang pensiunan profesor di Caltech dan masih aktif di bidangnya melalui TESLAco. Mereka yang menanggapi di bagian komentar pun ‘bukan orang sembarangan’ juga. Mereka juga ada yang merupakan akademisi, profesor, practicing engineer, dan penulis buku di bidang ini. Mereka juga pakar di bidang yang sama, sebagian nama bahkan mungkin anda kenal. Mereka bersilang pendapat mengenai definisi dan penerapannya di salah satu cabang bahasan mengenai transformer dan coupled inductors. Bandingkan juga dengan beberapa kutipan berikut ini:
Fenomena silang pendapat seperti ini bagi saya dapat membantu menjaga kewaspadaan (dan ‘kewarasan’), mengenai siapa saya dan batas kemampuan saya. Dari setiap yang kita ketahui, selalu masih sangat banyak yang tidak kita ketahui. Juga ada beberapa pendapat yang berbeda mengenai satu hal yang sama (beserta ketepatan berdasarkan kedalaman penggunaan). Dengan begitu saya terdorong untuk sedapat mungkin tidak berhenti belajar, selagi masih mampu. Hal yang sama juga disarankan kepada mahasiswa, orang-orang muda pewaris Bumi di masa depan. Teruslah belajar. Sebagai penutup bagian/blok ini bagi mahasiswa, orang-orang muda yang masih bersemangat untuk belajar, seperti yang disampaikan di awal bahasan tentang transformer ini memang sering sangat rumit. Terutama kalau pembahasan sudah semakin dalam (seperti layaknya semua hal lain dalam kehidupan) dan semakin banyak unsur ketidakidealan yang disertakan. Anda mungkin bahkan akan menemukan kata-kata black art untuk menggambarkannya.
Kutipan di atas hanyalah sebagian kecil contoh saja, beberapa sumber mungkin menggunakan kata-kata yang berbeda tetapi sebenarnya menyampaikan maksud yang sama. Ini justru tidak dalam rangka mematahkan semangat tetapi ajakan untuk proporsional, ini memang bukan bidang yang teramat mudah untuk didalami. Bahasan tentang flyback converter topology akan dilanjutkan ke artikel berikutnya. Untuk seri artikel mata kuliah Elektronika Daya II, bisa dilihat di halaman ini. [[1]]D. W. Hart, Power electronics, 1st ed. New York: McGraw-Hill Higher Education, 2010.[[1]] [[2]]The Flyback Converter, Lecture notes, ECEN4517.[[2]] [[3]]P. C. Sen, Principles of electric machines and power electronics, 3rd ed. United States: Wiley, John & Sons, 2013.[[3]] [[4]]B. Choi, Pulsewidth modulated DC-to-DC power conversion: Circuits, dynamics, and control designs. United States: John Wiley & Sons, 2013.[[4]] [[5]]D. W. Hart, Power electronics, 1st ed. New York: McGraw-Hill Higher Education, 2010.[[5]]
font cache: Ψ α β π θ μ Φ φ ω Ω ° ~ ± ≈ ≠ ≡ ≤ ≥ ∞ ∫ • ∆
*Pengaturan footnote tidak dapat sepenuhnya sesuai dengan format pengutipan IEEE.
membantu sekali jika aku benar benar memahami bahasa inggris 🙁
Ini pengalaman saya pribadi. Sayangnya saya juga tidak lancar berbahasa Inggris. Tetapi kalau ada informasi atau ilmu yang memang diperlukan, saya biasanya usahakan untuk mempelajari. Caranya saya coba menggunakaan https://translate.google.com/ atau https://www.bing.com/translator .
Suatu kali saya pernah perlu mamahami mengenai salah satu pengaturan di LTspice, yang waktu itu hanya saya temukan dalam diskusi di forum menggunakan bahasa Jerman. Diskusi ini bisa cukup saya mengerti dengan menggunakan bantuan translator tadi. Itu salah satu sebab mengapa biasanya saya menyertakan tautan/link ke sumber atau dokumen aslinya. Cara ini memang terkesan tidak ‘keren’, tetapi belajar bukan soal keren atau tidak keren. Kemudian, bahasa Inggris ‘teknik’ biasanya tergolong tidak banyak variasi bila dibandingkan dengan bahasa Inggris sastra. Lama-lama kita akan lebih mungkin untuk terbiasa dan menjadi lebih lancar.
Dulu juga pernah saya harus mencoba memahami lembar panduan produk yang dalam bahasa China (Mandarin?). >> https://sunupradana.info/pe/2016/09/10/dasar-pengaturan-perkuliahan-04-bahasa/
Selamat belajar, tetap semangat.