Belajar dari bahan di situs perusahaan pembuat induktor

[ [ kutipan singkat ] ]

Sebagiamana biasanya saya selalu mengemukakan bahwa ada banyak bahan belajar yang tersedia di zaman ini. Data-Informasi-Pengetahuan-Kebijaksanaan tersedia untuk dapat diakses dengan jauh lebih cepat dari zaman sebelumnya. Bahkan sering dikatakan bahwa kesulitan pada dekade terakhir ini seringkali bukanlah tentang bagaimana mencari informasi untuk banyak hal, tetapi justru bagaimana memilah data dan informasi yang jumlahnya besar sekali. Ini adalah lanjutan dari era ‘banjir informasi‘.

Ini juga berlaku untuk sumber pengetahuan di bidang elektro/elektronika. Banyak sekali informasi dari berbagai sumber yang bisa ditemukan dan disaring. Disesuaikan penggunaannya sebatas keperluan/kebutuhan. Sering kali persoalannya adalah apakah ada kemauan atau tidak untuk mencari dan mempelajarinya. Selain dari textbook, mahasiswa juga bisa mencari dari berbagai lecture notes/course notes di perguruan tinggi ternama di bidang ini di dunia. Misalnya dari MIT, Rose-Hulman, UoS, Calpoly, UTK, CU Boulder, CMU, Stanford. Alternatif lain adalah dengan mencari di MOOC seperti edX, Coursera, Udacity, MIT OCW.  Pilihan lainnya lagi adalah dengan mencari informasi di sejumlah website perusahaan yang bergerak di bidang elektronika. Belum lagi bahwa mahasiswa bisa mengakses sejumlah besar tutorial yang tersedia di sejumlah majalah (Design News, Planet Analog, EETimes, EDN, EEWeb), Instructables, Medium, WordPress, Blogspot, dan Youtube. Meskipun tidak semua sumber tersebut bisa langsung dikutip begitu saja ke dalam karya Tugas Akhir/Skripsi, tetapi tetap bagus dan berharga sebagai bahan belajar.

Di artikel ini akan dicoba dicontohkan bagaimana beberapa bahan dari beberapa sumber dapat dipergunakan untuk membantu lebih memahami tentang komponen dan sistem elektronika daya. Sebagai contoh, dipergunakan lingkup bahasan DC-DC Converter (terutama SEPIC) dan komponen induktor (terutama coupled inductor).

Perusahaan-perusahaan yang memproduksi komponen IC regulator/controller biasanya cukup banyak memberikan sejumlah informasi yang bisa dipakai sebagai bahan belajar. Dari datasheet (data-sheet), application note, user guide, user manual sampai yang whitepapers. Misalnya perusahaan seperti Littelfuse, STMicroelectronics, Texas Instruments, Microchip, Analog Devices, Maxim, Infineon, Renesas, Vishay, Bourns. Beberapa dari perusahaan itu bahkan tidak hanya memproduksi komponen aktif tetapi juga komponen pasif. Sehingga pengguna bisa mendapatkan informasi yang lebih banyak dari satu tempat.

Untuk DC-DC Converter sendiri, komponen pasif yang terpenting adalah induktor. Berbeda dari masa-masa sebelumnya, sekarang sudah semakin banyak variasi komponen induktor siap pakai yang bisa didapatkan. Ada perusahaan-perusahaan yang memiliki fokus untuk memproduksinya, di sampaing beberapa perusahaan produsen komponen elektronika yang umum. Dua yang menurut saya paling mengemuka adalah Coilcraft dan Würth Elektronik. Beberapa yang lain yang juga memproduksi induktor (yang di antaranya) untuk keperluan sistem elektronika daya; Murata, API Delevan, TDK Electronics, Vishay, Bourns, dan TT Electronics.

Perusahaan adalah entitas bisnis, yang kemunculan, keberadaan, serta kemampuannya untuk tetap bertahan adalah berasal dari upaya penyelesaian masalah yang dihadapi oleh pihak lain.  Sistem elektronika semakin banyak yang memerlukan komponen induktor, ini adalah kebutuhan yang perlu dipenuhi. Perusahaan-perusahaan yang mampu bertahan sebagai produsen induktor yang dipercaya adalah perusahaan yang bukan hanya mampu memberikan harga produk yang kompetitif. Tetapi lebih dari itu, ada banyak hal lain yang menyumbang kesuksesannya sebagai perusahaan. Antara lain adalah customer education. Setiap perusahaan berlomba untuk mempermudah para pelanggan. Misalnya dari segi distribusi, dari segi pemilihan komponen, bantuan desain sampai dengan ketersediaan informasi.

Di lain artikel akan saya coba untuk menunjukkan contoh bagaimana perusahaan-perusahaan itu menyediakan perangkat lunak seperti simulator, kalkulator, atau setidaknya semacam parametric based selector untuk mempermudah pembeli dan calon pembeli. Tetap kali ini yang akan dicontohkan adalah informasi yang disediakan perusahaan-perusahaan itu. Kalaupun ada kendala mengenai bahasa pengantar, sekarang ini sudah sangat mudah untuk mempergunakan Google Translate atau Bing Microsoft Translator. Keduanya sudah sangat mudah untuk dipergunakan, berbeda dengan saat kuliah S1 saya dahulu. Saat itu layanan online yang tersedia bebas pakai hanyalah layanan Babelfish dari Altavista

 

Würth Elektronik

Ada beberapa informasi dari Würth yang cukup bagus sebagai bahan bacaan, berkenaan dengan dc-dc converter atau induktor. Tulisan yang pertama adalah tentang perbandingan sejumlah topologi SMPS {{1}}. Tulisan singkat ini diawali dengan perbandingan antara catu daya linier dengan catu daya tersakelar. Lalu dilanjutkan dengan penjelasan singkat mengenai tipe-tipe/topologi catu daye tersakelar. Di halaman ini juga terdapat link ke file SMPSChart.

Tulisan yang kedua sama singkatnya dengan tulisan yang pertama tadi. Topologi SEPIC dibahas dengan lebih dalam. Dilengkapi dengan gambar tata letak (layout) komponen SEPIC di simulator LTspice{{2}}. Di tulisan ini dikemukakan argumentasi untuk memilih mempergunakan coupled inductors.

[intense_blockquote color=”#f7f4ff” author=”Würth Elektronik”]

You might be asking yourself why you would use a coupled inductor instead of two inductors. Here are the main advantages:

  • Less space on PCB
  • Less cost
  • Input ripple current cancellation (resulting in smaller input capacitor and simpler EMI input filter)
  • Increased efficiency (due to smaller inductor value [half of uncoupled SEPIC] and therefore less DCR and less winding losses)
[/intense_blockquote]

Artikel ketiga menunjukkan dengan lebih spesifik mengenai coupled inductors {{3}}. Dilengkapi dengan video yang juga dapat dilihat via Youtube, dan topologi rangkaian penyakelar di Gambar 1 berikut.

Gambar 1. Topologi tahapan penyakelar daya.

Artikel yang terakhir ini menyampaikan alternatif cara untuk menentukan nilai induktor yang dipergunakan dalam sistem dc-dc converter{{4}}. Di sini disebutkan tentang fasilitas online yang disediakan, REDEXPERT. Perangkat ini akan coba saya tampilkan di lain artikel. Berikutnya, di tulisan singkat ini disampaikan juga argumentasi yang lebih panjang tentang keutamaan penggunakan coupled inductors bila dibandingkan dengan dua induktor terpisah.

Coupled Inductor vs. Single Inductors

After calculating the SEPIC converter topology, the program suggests the inductors that best fit electronically into the circuit. This list can then be further optimized by taking DCR or mechanical dimensions into consideration.

In this example, a coupled inductor pre-setting shows an example using two single inductors. The inductance value of the coupled inductor is exactly half of the single inductor. This clearly shows that by choosing a coupled inductor, the DCR can be reduced significantly (67 mOhm vs. two 72 mOhm).

<span class="su-quote-cite"><a href="https://www.we-online.com/web/en/electronic_components/news_pbs/blog_pbcm/blog_detail-worldofelectronics_77695.php" target="_blank">Würth Elektronik</a></span>

 

Coilcraft

Artikel pertama di situs Coilcraft yang saya kutip mengenalkan tentang komponen induktor{{5}}. Ini adalah artikel yang bagus untuk mengingat kembali tentang induktor. Misalnya yang saya kutip di Gambar 2 berikut ini adalah salah satu fungsi induktor di suatu rangkaian daya. Di bagian bawah setiap artikel di Coilcraft, terdapat beberapa tautan yang menarik. Baik yang menuju ke artikel lain maupun ke sejumlah tools yang bisa dipakai untuk membantu perhitungan/simulasi.

Gambar 2. Fungsi induktor untuk mengurangi riak arus.

Artikel kedua membahas secara lebih spesifik mengenai induktor terkopel{{6}}. Misalnya membahas tentang bagimana cara memilih induktor terkopel dengan fasilitas coupled inductor finder. Artikel ini juga membahas persamaan dan perbedaan antara penggunaan istilah komponen induktor, serta masalah coupling coefficient seperti:

Close coupling may not be optimal for all applications. In fact, Coilcraft’s MSC1278 Series of coupled inductors is designed with high leakage inductance for use in certain SEPIC applications. The loosely coupled windings (K ≈ 0.8) improve SEPIC efficiency by reducing circulating current and still provide twice the ripple current reduction of separate inductors.<span class="su-quote-cite"><a href="https://www.coilcraft.com/edu/Coupled%20Inductor.cfm" target="_blank">Coilcraft</a></span>

Artikel ketiga dalam format file pdf yang saya kutip dari situs Coilcraft ini sangatlah ‘praktis'{{7}}. Di dalamnya terdapat contoh perancangan dan perhitungan untuk menentukan induktor mana yang dipilih untuk dipergunakan. Sebagaimana di Gambar 3, saya hanya mengutip langkah 1, langkah 6, dan langkah 7. Sangat disarankan untuk membaca secara utuh informasi di dalam artikel ini dari situs Coilcraft.

Gambar 3. Contoh perancangan.

Halaman berikutnya dari Coilcraft adalah tampilan depan untuk produk coupled inductors{{8}}. Sebagai contoh, sebagian saya tampilkan di Gambar 4.

Gambar 4. Coilcraft Coupled Inductors.

Halaman terakhir yang saya kutip dari Coilcraft adalah halaman yang menyajikan informasi lebih detail tentang salah satu komponen{{9}}. Lihat Gambar 4. Dari halaman itu bisa diakses beberapa informasi di halaman lain tentang komponen yang sama.

Gambar 5. MSC1278 Series

Gambar 6. Datasheet MSC1278 Series.

 

Sebagai contoh cepat simulasi coupled inductors, kita bisa mempergunakan PSIM. Berikut ini dipakai dua nilai sebagai pembanding, yang pertama masing-masing bernilai 100 μH dan yang kedua masing-masing bernilai 50 μH. Perlu diingat bahwa seringkali simulasi untuk coupled inductors memerlukan rentang waktu yang lebih panjang.

Gambar 7. Simulasi coupled inductors dengan PSIM untuk nilai 100 μH.

Gambar 8. Hasil simulasi, riak arus sebesar 74.32 mA (0.07432 A)

Gambar 9. Simulasi coupled inductors dengan PSIM untuk nilai 50 μH.

Gambar 10. Hasil simulasi, riak arus sebesar 140 mA (0.14 A)

 

[intense_tabs direction=”right” active_tab_background_color=”#000000″ active_tab_font_color=”#ffff00″ trigger=”click”] [intense_tab title=”Video01″ border=”3px solid #e8e8e8″ link_target=”_self” content_background_color=”#000000″ content_font_color=”#ffffff” icon_size=”1″ icon_position=”left”]

[/intense_tab] [intense_tab title=”Video02″ border=”3px solid #e8e8e8″ link_target=”_self” icon_size=”1″ content_background_color=”#000000″ content_font_color=”#ffffff” icon_position=”left”]

[/intense_tab] [intense_tab title=”Video03″ border=”3px solid #e8e8e8″ link_target=”_self” icon_size=”1″ content_background_color=”#000000″ content_font_color=”#ffffff” icon_position=”left”]

[/intense_tab] [intense_tab title=”Video04″ border=”3px solid #e8e8e8″ link_target=”_self” icon_size=”1″ content_background_color=”#000000″ content_font_color=”#ffffff” icon_position=”left”]

[/intense_tab] [/intense_tabs]

 

[[1]] Switch Mode Power Supply Topologies Compared [[1]] [[2]] Coupled Inductors for SEPIC Converter Applications [[2]] [[3]] Coupled Inductors [[3]] [[4]] How to Calculate an Inductor for a SEPIC Converter [[4]] [[5]] What is an Inductor? [[5]] [[6]] Coupled Inductor Guide [[6]] [[7]] Selecting Coupled Inductors for SEPIC Applications [[7]] [[8]] Coupled Power Inductors [[8]] [[9]] Coupled SEPIC Inductors MSC1278 Series [[9]]

Leave a Reply

Your email address will not be published. Required fields are marked *