Penggunaan coupled inductors di rangkaian SEPIC

Sistem konverter dengan tipe SEPIC dapat diwujudkan dengan menggunakan dua buah induktor yang terpisah. Tetapi anda bisa jadi akan menemukan sistem SEPIC dengan hanya satu induktor saja. Sebelum di lain waktu akan melihat bagaimana solusi SEPIC komersial dengan tipe closed-loop, maka kali ini kita akan melihat bagian terakhir dari variasi sistem SEPIC yaitu coupled inductors.

[ Semua gambar di bawah ini dapat dilihat versi tampilan yang lebih besar dengan cara melakukan klik-kanan di gambar lalu memilih “Open image in new tab” pada browser. ]

Gambar 1. Perancangan SEPIC dengan TI PSD.

Gambar 1 menunjukkan bahwa di PSD ada fasilitas perhitungan untuk melakukan perancangan rangkaian SEPIC yang mempergunakan dua induktor yang dililitkan di inti yang sama (coupled inductors). Nanti akan coba kita lihat apakah benar ada perbedaan riak arus (current ripple) antara induktor yang terpisah dengan yang coupled/mutual. Setidaknya induktor yang terkopel ini dipilih untuk dipergunakan oleh produsen karena akan menggunakan tempat yang lebih sedikit di PCB dan cenderung akan lebih murah.

Gambar 2. Microchip PIC16F1788 Wireless DC/DC LED Driver.

Gambar 2 menunjukkan contoh bagaimana coupled inductors dapat membuat suatu produk menjadi lebih ringkas. Bandingkan gambar skema induktor di situ dengan L1 di Gambar 3 berikut ini. 

Gambar 3. Texas Instuments, slyt411.

Gambar 4. Microchip, AN1137 Using the MCP1631 Family to Develop Low-Cost Battery Chargers.

Gambar 5. Microchip, AN960 New Components and Design Methods Bring Intelligence to Battery Charger Applications.

Gambar 6. Simulasi dasar dengan induktor terpisah.

Seperti biasa, simulasi di Gambar 6 dipergunakan untuk dasar pembanding/baseline untuk rangkaian dan simulasi berikutnya. Mulai Gambar 7 berikut akan ditunjukkan ‘evolusi’ rangkaian dasar menuju rangkaian dengan coupled inductors/mutual inductance.

Gambar 7. Evolusi yang pertama dari rangkaian.

Gambar 8. Evolusi yang kedua dari rangkaian.

Gambar 8 adalah versi akhir rangkaian simulasi untuk open-loop SEPIC dengan coupled inductors. Meskipun menurut beberapa sumber nilai induktor kopel dapat dikurangi, namun untuk simulasi kali ini masih akan dipertahankan nilai yang sama untuk dibandingkan dengan simulasi dari TI PSD. Di Gambar 1 dapat dibaca nilai riak arus (current ripple) untuk konfigurasi dua induktor (yang masing-masing bernilai 100 μH), yaitu 160 mA. Hasil ini bisa dibandingkan dengan hasil simulasi LTspice untuk rangkaian yang serupa, Gambar 7, sebagaimana terilihat di Gambar 9 berikut ini.  

Gambar 9. Riak arus (current ripple) untuk penggunaan dua induktor 100 μH secara terpisah.  

Hasil antara simulasi di Gambar 9 adalah masih ‘in the ballpark‘ (mendekati) hasil simulasi PSD di Gambar 1. Berikutnya untuk coupled inductors kita kembali terlebih dahulu ke simulasi PSD, di Gambar 10 ini.

Gambar 10. Perhitungan/simulasi dengan PSD untuk coupled inductors.

Konfigurasi yang diatur untuk perhitungan PSD seperti di Gambar 10 akan menjadi pembanding hasil yang nanti akan diperoleh dari simulasi di LTspice di Gambar 11.

Gambar 11. Riak arus (current ripple) untuk penggunaan coupled inductors 100 μH.

Gambar 11 adalah hasil dari simulasi rangkaian SEPIC di Gambar 9 yang menggunakan coupled inductors. Untuk percobaan ini, nilai masing-masing induktor tidak diubah tetap 100 μH. Maka dapat dibandingkan dengan Gambar 10 bahwa nilai kedua simulasi, tetap mendekati nilai yang sama. Dari sini secara empiris bisa diambil kesimpulan bahwa untuk nilai induktor yang sama maka nilai ripple current akan lebih kecil jika induktor dihubungkan kopel di inti yang sama (coupled inductors). Oleh karena itu beberapa sumber menyatakan bahwa secara praktis bisa diperkirakan bahwa jika memilih mempergunakan coupled inductors, nilai induktansi pun bisa dikurangi separuhnya. Ini jelas merupakan tambahan penghematan, meskipun nilai induktor kopel yang sesungguhnya masih perlu dihitung dengan lebih teliti untuk mengakomodasi ketidakidealan rangkaian.

Gambar 12. Simulasi PSD dengan nilai induktor kopel sebesar 50 μH. 

Gambar 13. Simulasi LTspice untuk coupled inductors SEPIC (masing-masing 50 μH).

Simulasi LTspice di Gambar 13 (dan PSD di Gambar 12) menunjukkan bahwa sekalipun nilai masing-masing lilitan induktor dikurangi separuh (50 μH) pada rangkaian dengan coupled inductors, tetapi current ripple akan sebanding dengan riak arus di rangkaian SEPIC dengan induktor terpisah (yang masing-masing induktornya sebesar 100  μH). 

Catatan penting untuk simulasi dengan coupled inductors/mutual inductance di LTspice adalah mengenai pengaturan nilai kopel. Untuk semua rangkaian percobaan di atas pengaturan yang dipergunakan adalah K L1 L2 0.9.  Angka 0.9 menunjukkan nilai koefisien kopel, nilai coupling coefficient yang sempurna adalah 1. Angka 1 menunjukkan bahwa tidak ada leakage inductance, kopling sempurna antar tiap induktor, L1 dan L2. Selain dari kesulitan untuk mewujudkannya di sistem fisik, nilai coupling coefficient sebesar 1 artinya semua energi di L1 akan dipindahkan ke L2 yang akan mendatangkan masalah juga saat simulasi. Di kondisi itu tidak ada arus yang mengalir ke kapasitor kopling C1. Sehingga coupling capacitor itu memang bisa dihilangkan, tetapi sebagai akibatnya rangkaian SEPIC akan berubah menjadi rangkaian flyback yang memiliki karakteristik kerja yang berbeda. Masih bisa kita ingat bahwa pada umumnya rangkaian SEPIC tidak memerlukan tambahan snubber meskipun bekerja dengan induktor (bahkan dua induktor tunggal yang terpisah atau coupled inductors). Hanya sebagai pembanding, di Gambar 14 di bawah ini akan ditunjukkan bagaimana jika pengaturan kopling untuk Gambar 13 diubah menjadi K L1 L2 1.

Gambar 14. Percobaan dengan pengaturan K L1 L2 1.

Setiap simulator, termasuk simulator rangkaian/sistem elektronika yang berbasis SPICE, tentu memiliki pengaturannya masing-masing. Beberapa berlaku umum, beberapa spesifik di simulator yang dimaksud. Kalau anda perhatikan, di semua rangkaian coupled inductors/mutual inductance simbol/lambangnya hampir serupa/sama. Apakah memang harus demikian di LTspice? Jawabannya adalah tidak. Bagaimana anda menempatkan posisi masing-masing induktor yang terkopel tidak menjadi soal. Yang menjadi penanda perintah bagi LTspice adalah  apa yang disebut sebagai ‘K-statement’, misalnya K L1 L2 0.9. Dengan perintah itu LTspice mengetahui bahwa L1 dan L2 terhubung, coupled inductors/mutual inductance/transformer. Dari posisinya di K-statement itu diketahui bahwa L1 sebagai sisi primer, L2 sebagai sisi sekunder, dan mutual coupling coefficient adalah sebesar 0.9. Gambar 15 ini membuktikan bahwa rangkaian tidak harus dibentuk seperti di Gambar 8 (dan seterusnya), kecuali untuk mempermudah pengenalan visual saja. LTspice mengenali adanya induktor yang terhubung kopel hanya dengan mengetahui adanya ‘K-statement’.  

Gambar 15. Penggunaan K-statement.

Di kesempatan lain saya akan coba menyampaikan tentang sumber belajar Switching DC-DC Converter / SMPS (Switched Mode Power Suply) dari perusahaan-perusahaan yang memproduksi induktor/ transformer. Karena komponen ini juga merupakan salah satu komponen yang terpenting untuk suatu catu daya tersakelar selain penyakelar (regulator / controller).   

 

 


font cache: Ψ α β π θ μ Φ φ ω Ω ° ~ ± ≈ ≠ ≡ ≤ ≥ ∞ ∫ • ∆ 

Leave a Reply

Your email address will not be published. Required fields are marked *