Simulasi linear step-down

Apa yang perlu dilakukan jika, misalnya, kita memiliki catu daya 9 V (DC) sementara kita membutuhkan tegangan 5 V (DC)?

Cara yang paling mudah adalah dengan menggunakan pembagi tegangan dengan resistor. Misalkan beban berupa resistor 10 Ω, sehingga dengan beda potensial sebesar 5 V akan memerlukan arus sebesar 500 mA.

Gambar 1.

Gambar 2. Pembagi tegangan dengan resistor

Gambar 3. Pemeriksaan rancangan dengan perhitungan

Pada Gambar 1 dapat dilihat bahwa meskipun rancangan ini memberikan nilai yang mendekati nilai sasaran awal (5 V, 500 mA) namun efisiensinya masih sangat rendah. Tidak sampai 8,538 % daya yang dipakai oleh rangkaian benar-benar dipakai oleh resistor beban Rload. Pada Gambar 2 terlihat bahwa dari 3.302 A arus yang ditarik dari sumber, sebenarnya hanya 500 mA yang benar-benar mengalir ke beban. Demikian pula diperlihatkan bahwa dari total disipasi daya sebesar 29,72 W hanya 2,537 W saja daya yang dipergunakan oleh beban.

Selain masalah efisiensi daya, ada masalah lain yang dalam gambar-gambar di atas tidak diperlihatkan, yaitu risiko apabila nilai tegangan pada sumber berubah-ubah. Masalah lain (yang juga berlaku sama untuk semua sistem untai terbuka atau “open loop“) adalah jika arus beban berubah nilainya. Dengan kata lain penggunaan daya oleh beban meningkat.

Alternatif sederhana lainnya yang dapat dipergunakan adalah dengan mempergunakan zener.

Gambar 4. Perhitungan dasar zener dengan bantuan aplikasi Android

Gambar 5. Simulasi rangkaian dasar zener

Gambar 6. Simulasi perubahan tegangan sumber

Dari Gambar 5 kita bisa melihat perbaikan efisiensi daya, sekitar 52,88 % daya dipergunakan oleh beban, jauh lebih baik daripada yang ditunjukkan pada Gambar 1 sebesar 8,538 %. Gambar 6 memberikan informasi hasil simulasi perubahan pada tegangan sumber. Sebagai regulator yang paling sederhana, zener dapat membantu mengurangi efek dari variasi pada sumber maupun beban. Tentu saja kemampuan ini terbatas pada rentang tertentu.

Gambar 7. Regulasi tegangan menggunakan LM7805

Gambar 8. Hasil simulasi perubahan sumber dan beban pada sistem dengan regulator LM7805

Gambar 9. Detail hasil simulasi pengaruh variasi sumber dan beban

Gambar 10. Rata-rata disipasi daya

Sebagaimana terlihat dari Gambar 7 sampai Gambar 9, penggunaan regulator tegangan linear seperti LM7805 mampu membantu sistem untuk mengatasi pengaruh perubahan sumber dan beban. Pada simulasi tersebut sengaja kapasitor pada input dan output tidak dipasang, dengan demikian kerja tunggal voltage regulator dapat lebih terlihat. Pada penggunaan yang sesungguhnya, sebaiknya kapasitor masukan dan keluaran benar-benar dipergunakan.

Dari informasi pada Gambar 10, dapat diperkirakan bahwa disipasi daya oleh beban sekitar 55,12 %. Disipasi daya oleh LM7805 sendiri dalam simulasi sekitar 2,03 Watt, daya ini diwujudkan dalam bentuk panas oleh komponen.

Komponen voltage regulator semacam LM7805 maupun yang bertipe LDO sudah sangat lazim dipergunakan. Tipe regulator ini mudah untuk dirancang ke dalam sistem dan mudah untuk diwujudkan dalam bentuk rangkaian fisik. Hanya saja tipe linear ini secara umum masih kalah dari tipe non-linier (SMPS; switched mode power supply) dalam hal efisiensi penggunaan energi (daya). Bahasan tentang bagian dari SMPS akan dilanjutkan pada post di lain waktu.


 

 

Simulasi IGBT sebagai sakelar

Post kali ini adalah kelanjutan dari tulisan sebelumnya yang membahas mengenai simulasi penggunaan MOSFET sebagai sakelar dengan bantuan simulator turunan SPICE. Karena itu bagi yang belum mambaca bagian tersebut disarankan untuk membaca bagian itu terlebih dahulu. Terutama mengenai tujuan dan filosofi dasar perbandingan sederhana antar software simulator.

Keterangan lebih rincin mengenai Insulated Gate Bipolar Transistor Loading (IGBT) dapat dilihat di beberapa sumber bebas akses yang tersedia, misalnya di situs ini dan di sini. Singkatnya pada prinsipnya dapat dibayangkan secara sederhana bahwa IGBT adalah perpaduan antara MOSFET dengan BJT. Mosfet dipergunakan untuk mengendalikan operasi komponen melalui tingkat tegangan pada kaki gate (bukan base). Sedangkan BJT dipakai sebagai pelaksana pengendalian arus.

insulated gate bipolar transistor

sumber: http://www.electronics-tutorials.ws/power/insulated-gate-bipolar-transistor.html

 

I. PROTEUS


Gambar 1.

Gambar 2.

Gambar 3.

 

Gambar 4.

 


Gambar 5.

 

Gambar 6.

 

II. LTSPICE

 

Gambar 7.

 

Gambar 8.

 

Gambar 9.

 

Gambar 10.

 

Gambar 11.

 

Gambar 12.

 

Gambar 13.

 

Gambar 14.

 

Gambar 15.

 

Gambar 16.

 

Gambar 17.

 

Gambar 18.

Pada Gambar 18, dengan melakukan zooming terhadap tampilan kurva karakteristik maka kita bisa melihat dengan lebih detail sehingga kita bisa melakukan skenario what-if dengan nilai tegangan masukan pada gate yang berbeda-beda. Misalnya pada Gambar 18, diperlukan tegangan pada V2 setidaknya sekitar 10 V sehingga nilai VGE tidak berbeda jauh. Jika tegangan pada  VGE jauh di bawah 10 V maka nilai besar arus listrik yang dapat lewat tidak akan dapat mendekati nilai maksimumnya dan nilai jatuh tegangan pada CE akan semakin besar yang mengakibatkan keborosan penggunaan energi pada komponen penyakelar.

III. TINA-TI

 

Gambar 19.

 

Gambar 20.

 

Gambar 21.

Gambar 22.

Gambar 22 menunjukkan bahwa berkaitan dengan disipasi daya (pengeluaran energi per satuan waktu), saat kritis untuk penyakelaran ada pada saat crossing. Yaitu saat persimpangan arus dan tegangan pada komponen semikonduktor penyakelar seperti IGBT. Saat itulah nilai power tertinggi terjadi, yang menghasilkan panas pada komponen.

 

Simulasi MOSFET sebagai sakelar

Dalam post kali ini saya mencoba mengumpulkan screenshot dari simulasi yang saya lakukan untuk memperlihatkan karakteristik MOSFET dalam fungsinya sebagai sakelar. Sebelum itu, ada baiknya melihat kembali tutorial yang memiliki grafik yang menarik dan informatif seperti berikut:

enhancement mode mosfet

sumber gambar: http://www.electronics-tutorials.ws/transistor/tran_7.html

Saya menggunakan tiga buah simulator yang kesemuanya adalah turunan dari SPICE. Yang pertama adalah simulator mahal keluaran Labcenter Electronics, Proteus Design Suite. Kedua adalah LTspice dari Linear Technology, software ini gratis. Ketiga adalah TINA-TI dari Texas Instruments, yang juga gratis. TINA sendiri sebenarnya adalah produksi dari DesignSoft, versi penuhnya yang asli tentu tidak gratis. Tetapi untuk keperluan kali ini (dan banyak keperluan lain), dua software gratis ini sudah memadai bahkan handal dan lebih dari cukup.

Adalah tujuan dari artikel ini (dan artikel lainnya di masa lalu maupun yang akan datang) untuk menunjukkan bahwa perangkat lunak gratis tidak seringkali sudah memadai untuk beberapa keperluan. Terutama untuk dunia pendidikan, untuk mengajar generasi masa depan bangsa. Tanpa harus terburu-buru menggunakan software berbayar. Ada beberapa hal yang memang sulit atau bahkan tidak dapat dihindari, dan itu pengecualian yang jumlahnya semakin kecil. Kemampuan dan kemandirian bangsa itu dimulai dari kemauan untuk berusaha, kemauan untuk sedikit susah dan tidak semata-mata mau mengejar enaknya saja. Dimulai dari hal yang kecil, sebisa mungkin. Ini adalah salah satu wujud upayanya, dengan perbandingan langsung diupayakan agar kemampuan masing-masing software terlihat.

I.PROTEUS


Gambar 1. Simulasi Vds V.S. Id

 

Gambar 2. Simulasi Vds saat Vgs = 2,42 V

 

Gambar 3. Simulasi Vds saat Vgs = 2,44 V

Gambar 4. Simulasi Vds saat Vgs = 2,48 V

 


Gambar 5. DC transfer curve Vbb V.S. Vdd

 

Gambar 6. DC transfer curve Vdd V.S. Vbb

 

Gambar 7. Voltage and current crossing

 

Gambar 8. Rangkaian uji simulasi dengan oscilloscope

 

II. LTSPICE

Software gratis pertama untuk simulasi pensakelaran NMOSFET kali ini adalah LTspice. Ini adalah software yang sangat powerful dan fleksibel. Tetapi memang fasilitasnya tidak semudah Proteus untuk dipergunakan, perlu sedikit usaha dan nyali.

Simulasi kali ini dilakukan agak lebih lengkap daripada simulasi pada Proteus. Mosfet yang dipergunakan adalah IRLB3034 (IRLB3034PbF) produksi Infineon (IRF). Simulasi ini terutama ditujukkan untuk menunjukkan nilai tegangan yang memadai agar MOSFET dapat berfungsi penuh sebagai sakelar.

 

Gambar 9. Simulasi pengaruh stepping nilai V1 (menjadi Vgs) terhadap Id (IR2)

 

Gambar 10. Simulasi stepping VDS V.S. IDS

 

Gambar 11. Simulasi nilai RDS(ON) menggunakan nilai VDS dan IDS

 

Gambar 12. Nilai simulasi RDS(ON) saat VGS 5 V

 

Gambar 13. Nilai simulasi RDS(ON) saat VGS 4,42 V

 

Gambar 14. Nilai simulasi tegangan saat crossing

 

Gambar 15. Disipasi daya maksimum ada pada saat crossing, 2,42 V untuk model SPICE dari MOSFET IRLB3034PbF

 

Gambar 16.  Simulasi perbandingan RDS(ON) tiga N-MOSFET, menggunakan LTspice

 

Gambar 17. Simulasi perbandingan nilai tegangan saat disipasi daya maksimum pada penyakelaran untuk IRLB3034(PbF), IRFZ44N, dan IRF540, dengan LTspice

 

Dari sejumlah gambar simulasi LTspice di atas dapat dilihat bahwa LTspice sangat handal untuk dipergunakan sebagai simulator penyakelaran MOSFET. Memang perlu sedikit lebih banyak upaya berpikir daripada menggunakan simulator seperti Proteus atau Multisim, tetapi hasilnya sepadan.

Sungguh pun hasil simulasi tentu tidak akan selalu persis sama benar dengan komponen fisiknya, tetapi simulator ini sangat membantu. Saat pendidikan dan pelatihan, di tingkat engineering simulator ini dapat dipergunakan untuk memperoleh insight maupun sebagi alat bantu untuk memeriksa hasil perhitungan. Di tingkat engineering technology (vokasi seperti politeknik) simulator SPICE seperti LTspice dapat dipergunakan untuk mempermudah perkiraan/estimasi untuk perancangan praktis suatu sistem. Dengan bantuan simulator perhitungan yang lebih rumit dapat dikurangi (sampai batas tertentu).

 

III. TINA-TI

Simulator ini hampir sama seperti LTspice, antara lain dikeluarkan oleh produsen pembuat komponen dan karenanya seperti juga LTspice (Linear Technology) maka TINA-TI (Texas Instruments) telah berisi sejumlah besar komponen produksi TI. Sungguhpun begitu seperti juga LTspice, pustaka (library) komponen TINA-TI masih dapat ditambah. Baik komponen yang memang diprodukti oleh Texas Instruments maupun oleh produsen lain, selama masih menggunakan format SPICE. Caranya penambahannya memang agak berbeda dari cara penambahan komponen pada LTspice. Menurut saya masih agak lebih mudah pada LTspice untuk kebanyakan komponen standar, tetapi ini lebih pada soal selera dan kebiasaan.

Gambar 18. ERC untuk rangkaian simulasi NMOSFET sebagai sakelar dengan TINA

 


Gambar 19. Analisis DC dengan perhitungan “Nodal voltages

 

Gambar 20. Analisis DC dalam bentuk tabel

 

Gambar 21. Hasil simulasi DC transfer characteristics, sptepping VS1, IDS V.S. VDS

 

Gambar 22. Rangkaian simulasi untuk mendapatkan kurva karakteristik

 

Gambar 23. Hasil simulasi, characteristic curve untuk MOSFET

 

Gambar 24. Characteristic curve yang sudah diberi load line

 

Gambar 25. Contoh penggunaan kursor untuk mendapatkan nilai IDS dan VDS dari nilai VGS yang sesuai untuk arus beban dan catu daya pada rangkaian

 

Dari uji coba dengan tiga simulator ternyata didapati bahwa untuk simulasi karakteristik MOSFET, ketiganya telah terbukti mampu dan baik untuk dipergunakan, baik yang berbayar maupun yang gratis. Penambahan data komponen memang perlu dilakukan terutama untuk simulator yang gratis (LTspice dan TINA-TI), biasanya karena komponen bukan merupakan komponen produksi mereka sendiri. Beberapa komponen yang sudah sangat umum dan banyak dipakai biasanya sudah ada di dalam pustaka simulator.

Sebagai catatan tambahan mengenai jumlah komponen, Texas Instruments (TI) pada tahun 2011 telah mengakuisisi perusahaan raksasa komponen elektronika lain yaitu National Semiconductor (NS). Sebelumnya lagi pada tahun 2000 TI mengakuisisi Burr-Brown Coorporation. Dengan demikian jumlah komponen yang (pernah) diproduksi oleh TI sangatlah besar. Ini lebih memudahkan kita dalam mencari model SPICE dari komponen dan melakukan simulasi dengannya.

Di sisi lain, Linear Technology dikenal unggul dalam produksi komponen daya, termasuk untuk catu daya tersakelar (SMPS: Switched Mode Power Supply). Karena itu tidak aneh kalau LTspice pun dikenal terbukti unggul untuk simulasi rangkaian dan sistem elektronika daya (power electronics).

Sebagaimana telah diperlihatkan melalui gambar-gambar di atas, prinsipnya sama dengan komponen dan sistem lainnya, penggunaan komponen MOSFET perlu ketaatan pada aturan dan rekomendasi dari produsen. Untuk penggunaan sebagai sakelar (switch) MOSFET perlu diatur sedemikian rupa agar hanya bekerja pada salah satu dari dua keadaan; cut-off atau triode (ohmic). Sedangkan pada wilayah yang dinamakan saturation region (yang berbeda secara praktis dengan saturation pada BJT), justru MOSFET akan menggunakan lebih banyak daya (boros energi) yang tidak perlu.

Kondisi cut-off dapat diumpamakan setara dengan kondisi sakelar mekanis pada saat terbuka (open circuit). Sedang kondisi triode atau disebut juga ohmic, hampir setara dengan kondisi sakelar pada saat tertutup (short circuit). Pada kedua kondisi itu MOSFET sebagai sakelar menggunakan energi yang lebih sedikit. Pemahaman sederhananya adalah buka penuh atau tutup penuh, di antara kedua kondisi itu MOSFET justru akan mengeluarkan daya yang terbesar. Karena itu semakin sering MOSFET membuka dan menutup (sebagai sakelar), maka akan semakin boros energi, semakin besar daya.

Agar MOSFET dapat membuka (dan menutup) penuh, maka pengguna harus memberikan tingkat tegangan sesuai dengan rentang rekomendasi pabrik pembuatnya. Ada syarat yang harus dipenuhi untuk mendapatkan sesuatu, dalam hal ini misalnya nilai efisiensi daya yang baik. Untuk itu pengguna sebaiknya membaca datasheet dan mencari semua informasi yang relevan seperti VGS pada bagian (Absolute Maximum Ratings), maupun pada grafik seperti berikut ini:

Pesan moral tambahan dari simulasi ini adalah; sepanjang bersesuaian dengan akal sehat, sains dan teknologi, kita harus patuh terhadap sesuatu untuk mendapatkan sesuatu yang lain yang kita inginkan. Sesuatu yang bukan sekedar seremonial dan formalitas semata-mata. Simulasi (dan praktik rangkaian) ini juga salah satu wujud paling nyata dari pentingnya pemahaman korelasi dan kausalitas.